
Arduboy2 Library

Generated by Doxygen 1.8.11

Contents

1 Arduboy2 Library 1

2 Software License Agreements 11

3 Hierarchical Index 15

3.1 Class Hierarchy . 15

4 Class Index 17

4.1 Class List . 17

5 File Index 19

5.1 File List . 19

6 Class Documentation 21

6.1 Arduboy2 Class Reference . 21

6.1.1 Detailed Description . 28

6.1.2 Member Function Documentation . 28

6.1.2.1 allPixelsOn(bool on) . 28

6.1.2.2 begin() . 29

6.1.2.3 blank() . 29

6.1.2.4 boot() . 29

6.1.2.5 bootLogo() . 30

6.1.2.6 bootLogoCompressed() . 30

6.1.2.7 bootLogoExtra() . 30

6.1.2.8 bootLogoShell(void(∗drawLogo)(int16_t)) . 30

6.1.2.9 bootLogoSpritesBOverwrite() . 31

iv CONTENTS

6.1.2.10 bootLogoSpritesBSelfMasked() . 32

6.1.2.11 bootLogoSpritesOverwrite() . 32

6.1.2.12 bootLogoSpritesSelfMasked() . 32

6.1.2.13 bootLogoText() . 32

6.1.2.14 buttonsState() . 33

6.1.2.15 collide(Point point, Rect rect) . 33

6.1.2.16 collide(Rect rect1, Rect rect2) . 33

6.1.2.17 cpuLoad() . 34

6.1.2.18 delayShort(uint16_t ms) __attribute__((noinline)) 34

6.1.2.19 digitalWriteRGB(uint8_t red, uint8_t green, uint8_t blue) 35

6.1.2.20 digitalWriteRGB(uint8_t color, uint8_t val) . 35

6.1.2.21 display() . 36

6.1.2.22 display(bool clear) . 36

6.1.2.23 displayOff() . 37

6.1.2.24 displayOn() . 37

6.1.2.25 drawBitmap(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t h, uint8←↩

_t color=WHITE) . 37

6.1.2.26 drawChar(int16_t x, int16_t y, unsigned char c, uint8_t color, uint8_t bg, uint8_t
size) . 38

6.1.2.27 drawCircle(int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE) 38

6.1.2.28 drawCompressed(int16_t sx, int16_t sy, const uint8_t ∗bitmap, uint8_t color=W←↩

HITE) . 39

6.1.2.29 drawFastHLine(int16_t x, int16_t y, uint8_t w, uint8_t color=WHITE) 39

6.1.2.30 drawFastVLine(int16_t x, int16_t y, uint8_t h, uint8_t color=WHITE) 39

6.1.2.31 drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color=WHITE) . . . 40

6.1.2.32 drawPixel(int16_t x, int16_t y, uint8_t color=WHITE) 40

6.1.2.33 drawRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE) 40

6.1.2.34 drawRoundRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=←↩

WHITE) . 41

6.1.2.35 drawSlowXYBitmap(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t
h, uint8_t color=WHITE) . 41

6.1.2.36 drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2,
uint8_t color=WHITE) . 41

Generated by Doxygen

CONTENTS v

6.1.2.37 everyXFrames(uint8_t frames) . 42

6.1.2.38 exitToBootloader() . 42

6.1.2.39 fillCircle(int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE) 43

6.1.2.40 fillRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE) 43

6.1.2.41 fillRoundRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=W←↩

HITE) . 43

6.1.2.42 fillScreen(uint8_t color=WHITE) . 43

6.1.2.43 fillTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2,
uint8_t color=WHITE) . 44

6.1.2.44 flashlight() . 44

6.1.2.45 flipHorizontal(bool flipped) . 44

6.1.2.46 flipVertical(bool flipped) . 45

6.1.2.47 freeRGBled() . 45

6.1.2.48 generateRandomSeed() . 46

6.1.2.49 getBuffer() . 46

6.1.2.50 getCursorX() . 46

6.1.2.51 getCursorY() . 47

6.1.2.52 getPixel(uint8_t x, uint8_t y) . 47

6.1.2.53 getTextBackground() . 47

6.1.2.54 getTextColor() . 48

6.1.2.55 getTextSize() . 48

6.1.2.56 getTextWrap() . 48

6.1.2.57 height() . 49

6.1.2.58 idle() . 49

6.1.2.59 initRandomSeed() . 49

6.1.2.60 invert(bool inverse) . 49

6.1.2.61 justPressed(uint8_t button) . 50

6.1.2.62 justReleased(uint8_t button) . 50

6.1.2.63 LCDCommandMode() . 51

6.1.2.64 LCDDataMode() . 51

6.1.2.65 nextFrame() . 52

Generated by Doxygen

vi CONTENTS

6.1.2.66 nextFrameDEV() . 52

6.1.2.67 notPressed(uint8_t buttons) . 52

6.1.2.68 paint8Pixels(uint8_t pixels) . 53

6.1.2.69 paintScreen(const uint8_t ∗image) . 53

6.1.2.70 paintScreen(uint8_t image[], bool clear=false) 54

6.1.2.71 pollButtons() . 54

6.1.2.72 pressed(uint8_t buttons) . 55

6.1.2.73 readShowBootLogoFlag() . 55

6.1.2.74 readShowBootLogoLEDsFlag() . 56

6.1.2.75 readShowUnitNameFlag() . 56

6.1.2.76 readUnitID() . 56

6.1.2.77 readUnitName(char ∗name) . 56

6.1.2.78 safeMode() . 57

6.1.2.79 sendLCDCommand(uint8_t command) . 57

6.1.2.80 setCursor(int16_t x, int16_t y) . 58

6.1.2.81 setFrameDuration(uint8_t duration) . 58

6.1.2.82 setFrameRate(uint8_t rate) . 59

6.1.2.83 setRGBled(uint8_t red, uint8_t green, uint8_t blue) 59

6.1.2.84 setRGBled(uint8_t color, uint8_t val) . 60

6.1.2.85 setTextBackground(uint8_t bg) . 60

6.1.2.86 setTextColor(uint8_t color) . 61

6.1.2.87 setTextSize(uint8_t s) . 61

6.1.2.88 setTextWrap(bool w) . 61

6.1.2.89 SPItransfer(uint8_t data) . 62

6.1.2.90 systemButtons() . 62

6.1.2.91 waitNoButtons() . 62

6.1.2.92 width() . 63

6.1.2.93 write(uint8_t) . 63

6.1.2.94 writeShowBootLogoFlag(bool val) . 63

6.1.2.95 writeShowBootLogoLEDsFlag(bool val) . 64

Generated by Doxygen

CONTENTS vii

6.1.2.96 writeShowUnitNameFlag(bool val) . 64

6.1.2.97 writeUnitID(uint16_t id) . 65

6.1.2.98 writeUnitName(char ∗name) . 65

6.1.3 Member Data Documentation . 66

6.1.3.1 audio . 66

6.1.3.2 frameCount . 66

6.1.3.3 sBuffer . 67

6.2 Arduboy2Audio Class Reference . 67

6.2.1 Detailed Description . 68

6.2.2 Member Function Documentation . 68

6.2.2.1 begin() . 68

6.2.2.2 enabled() . 69

6.2.2.3 off() . 69

6.2.2.4 on() . 69

6.2.2.5 saveOnOff() . 70

6.2.2.6 toggle() . 70

6.3 Arduboy2Base Class Reference . 70

6.3.1 Detailed Description . 76

6.3.2 Member Function Documentation . 77

6.3.2.1 allPixelsOn(bool on) . 77

6.3.2.2 begin() . 77

6.3.2.3 blank() . 77

6.3.2.4 boot() . 78

6.3.2.5 bootLogo() . 78

6.3.2.6 bootLogoCompressed() . 78

6.3.2.7 bootLogoShell(void(∗drawLogo)(int16_t)) . 78

6.3.2.8 bootLogoSpritesBOverwrite() . 79

6.3.2.9 bootLogoSpritesBSelfMasked() . 80

6.3.2.10 bootLogoSpritesOverwrite() . 80

6.3.2.11 bootLogoSpritesSelfMasked() . 80

Generated by Doxygen

viii CONTENTS

6.3.2.12 buttonsState() . 80

6.3.2.13 clear() . 81

6.3.2.14 collide(Point point, Rect rect) . 81

6.3.2.15 collide(Rect rect1, Rect rect2) . 81

6.3.2.16 cpuLoad() . 82

6.3.2.17 delayShort(uint16_t ms) __attribute__((noinline)) 82

6.3.2.18 digitalWriteRGB(uint8_t red, uint8_t green, uint8_t blue) 82

6.3.2.19 digitalWriteRGB(uint8_t color, uint8_t val) . 83

6.3.2.20 display() . 84

6.3.2.21 display(bool clear) . 84

6.3.2.22 displayOff() . 84

6.3.2.23 displayOn() . 85

6.3.2.24 drawBitmap(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t h, uint8←↩

_t color=WHITE) . 85

6.3.2.25 drawCircle(int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE) 85

6.3.2.26 drawCompressed(int16_t sx, int16_t sy, const uint8_t ∗bitmap, uint8_t color=W←↩

HITE) . 86

6.3.2.27 drawFastHLine(int16_t x, int16_t y, uint8_t w, uint8_t color=WHITE) 86

6.3.2.28 drawFastVLine(int16_t x, int16_t y, uint8_t h, uint8_t color=WHITE) 86

6.3.2.29 drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color=WHITE) . . . 87

6.3.2.30 drawPixel(int16_t x, int16_t y, uint8_t color=WHITE) 87

6.3.2.31 drawRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE) 87

6.3.2.32 drawRoundRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=←↩

WHITE) . 88

6.3.2.33 drawSlowXYBitmap(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t
h, uint8_t color=WHITE) . 88

6.3.2.34 drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2,
uint8_t color=WHITE) . 88

6.3.2.35 everyXFrames(uint8_t frames) . 89

6.3.2.36 exitToBootloader() . 89

6.3.2.37 fillCircle(int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE) 90

6.3.2.38 fillRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE) 90

Generated by Doxygen

CONTENTS ix

6.3.2.39 fillRoundRect(int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=W←↩

HITE) . 90

6.3.2.40 fillScreen(uint8_t color=WHITE) . 90

6.3.2.41 fillTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2,
uint8_t color=WHITE) . 91

6.3.2.42 flashlight() . 91

6.3.2.43 flipHorizontal(bool flipped) . 91

6.3.2.44 flipVertical(bool flipped) . 92

6.3.2.45 freeRGBled() . 92

6.3.2.46 generateRandomSeed() . 93

6.3.2.47 getBuffer() . 93

6.3.2.48 getPixel(uint8_t x, uint8_t y) . 93

6.3.2.49 height() . 94

6.3.2.50 idle() . 94

6.3.2.51 initRandomSeed() . 94

6.3.2.52 invert(bool inverse) . 94

6.3.2.53 justPressed(uint8_t button) . 95

6.3.2.54 justReleased(uint8_t button) . 95

6.3.2.55 LCDCommandMode() . 96

6.3.2.56 LCDDataMode() . 97

6.3.2.57 nextFrame() . 97

6.3.2.58 nextFrameDEV() . 98

6.3.2.59 notPressed(uint8_t buttons) . 98

6.3.2.60 paint8Pixels(uint8_t pixels) . 99

6.3.2.61 paintScreen(const uint8_t ∗image) . 100

6.3.2.62 paintScreen(uint8_t image[], bool clear=false) 100

6.3.2.63 pollButtons() . 101

6.3.2.64 pressed(uint8_t buttons) . 101

6.3.2.65 readShowBootLogoFlag() . 102

6.3.2.66 readShowBootLogoLEDsFlag() . 102

6.3.2.67 readShowUnitNameFlag() . 103

Generated by Doxygen

x CONTENTS

6.3.2.68 readUnitID() . 103

6.3.2.69 readUnitName(char ∗name) . 103

6.3.2.70 safeMode() . 104

6.3.2.71 sendLCDCommand(uint8_t command) . 104

6.3.2.72 setFrameDuration(uint8_t duration) . 105

6.3.2.73 setFrameRate(uint8_t rate) . 105

6.3.2.74 setRGBled(uint8_t red, uint8_t green, uint8_t blue) 106

6.3.2.75 setRGBled(uint8_t color, uint8_t val) . 106

6.3.2.76 SPItransfer(uint8_t data) . 107

6.3.2.77 systemButtons() . 107

6.3.2.78 waitNoButtons() . 108

6.3.2.79 width() . 108

6.3.2.80 writeShowBootLogoFlag(bool val) . 108

6.3.2.81 writeShowBootLogoLEDsFlag(bool val) . 109

6.3.2.82 writeShowUnitNameFlag(bool val) . 109

6.3.2.83 writeUnitID(uint16_t id) . 109

6.3.2.84 writeUnitName(char ∗name) . 110

6.3.3 Member Data Documentation . 110

6.3.3.1 audio . 110

6.3.3.2 frameCount . 111

6.3.3.3 sBuffer . 111

6.4 Arduboy2Core Class Reference . 112

6.4.1 Detailed Description . 114

6.4.2 Member Function Documentation . 114

6.4.2.1 allPixelsOn(bool on) . 114

6.4.2.2 blank() . 115

6.4.2.3 boot() . 115

6.4.2.4 buttonsState() . 116

6.4.2.5 delayShort(uint16_t ms) __attribute__((noinline)) 116

6.4.2.6 digitalWriteRGB(uint8_t red, uint8_t green, uint8_t blue) 117

Generated by Doxygen

CONTENTS xi

6.4.2.7 digitalWriteRGB(uint8_t color, uint8_t val) . 117

6.4.2.8 displayOff() . 118

6.4.2.9 displayOn() . 118

6.4.2.10 exitToBootloader() . 119

6.4.2.11 flipHorizontal(bool flipped) . 119

6.4.2.12 flipVertical(bool flipped) . 119

6.4.2.13 freeRGBled() . 120

6.4.2.14 height() . 120

6.4.2.15 idle() . 120

6.4.2.16 invert(bool inverse) . 120

6.4.2.17 LCDCommandMode() . 121

6.4.2.18 LCDDataMode() . 121

6.4.2.19 paint8Pixels(uint8_t pixels) . 121

6.4.2.20 paintScreen(const uint8_t ∗image) . 122

6.4.2.21 paintScreen(uint8_t image[], bool clear=false) 122

6.4.2.22 safeMode() . 123

6.4.2.23 sendLCDCommand(uint8_t command) . 123

6.4.2.24 setRGBled(uint8_t red, uint8_t green, uint8_t blue) 124

6.4.2.25 setRGBled(uint8_t color, uint8_t val) . 124

6.4.2.26 SPItransfer(uint8_t data) . 125

6.4.2.27 width() . 125

6.5 BeepPin1 Class Reference . 126

6.5.1 Detailed Description . 127

6.5.2 Member Function Documentation . 128

6.5.2.1 begin() . 128

6.5.2.2 freq(const float hz) . 128

6.5.2.3 noTone() . 129

6.5.2.4 timer() . 129

6.5.2.5 tone(uint16_t count) . 129

6.5.2.6 tone(uint16_t count, uint8_t dur) . 130

Generated by Doxygen

xii CONTENTS

6.5.3 Member Data Documentation . 130

6.5.3.1 duration . 130

6.6 BeepPin2 Class Reference . 131

6.6.1 Detailed Description . 132

6.6.2 Member Function Documentation . 132

6.6.2.1 begin() . 132

6.6.2.2 freq(const float hz) . 132

6.6.2.3 noTone() . 133

6.6.2.4 timer() . 133

6.6.2.5 tone(uint16_t count) . 133

6.6.2.6 tone(uint16_t count, uint8_t dur) . 133

6.6.3 Member Data Documentation . 134

6.6.3.1 duration . 134

6.7 Point Struct Reference . 134

6.7.1 Detailed Description . 135

6.7.2 Constructor & Destructor Documentation . 135

6.7.2.1 Point(int16_t x, int16_t y) . 135

6.7.3 Member Data Documentation . 135

6.7.3.1 x . 135

6.7.3.2 y . 135

6.8 Print Class Reference . 136

6.8.1 Detailed Description . 137

6.9 Rect Struct Reference . 137

6.9.1 Detailed Description . 138

6.9.2 Constructor & Destructor Documentation . 138

6.9.2.1 Rect(int16_t x, int16_t y, uint8_t width, uint8_t height) 138

6.9.3 Member Data Documentation . 138

6.9.3.1 height . 138

6.9.3.2 width . 139

6.9.3.3 x . 139

Generated by Doxygen

CONTENTS xiii

6.9.3.4 y . 139

6.10 Sprites Class Reference . 139

6.10.1 Detailed Description . 140

6.10.2 Member Function Documentation . 141

6.10.2.1 drawErase(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 141

6.10.2.2 drawExternalMask(int16_t x, int16_t y, const uint8_t ∗bitmap, const uint8_←↩

t ∗mask, uint8_t frame, uint8_t mask_frame) 141

6.10.2.3 drawOverwrite(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 142

6.10.2.4 drawPlusMask(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 142

6.10.2.5 drawSelfMasked(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 143

6.11 SpritesB Class Reference . 144

6.11.1 Detailed Description . 144

6.11.2 Member Function Documentation . 145

6.11.2.1 drawErase(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 145

6.11.2.2 drawExternalMask(int16_t x, int16_t y, const uint8_t ∗bitmap, const uint8_←↩

t ∗mask, uint8_t frame, uint8_t mask_frame) 145

6.11.2.3 drawOverwrite(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 145

6.11.2.4 drawPlusMask(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 146

6.11.2.5 drawSelfMasked(int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame) 146

7 File Documentation 147

7.1 src/ab_logo.c File Reference . 147

7.1.1 Detailed Description . 148

7.2 src/Arduboy2.cpp File Reference . 148

7.2.1 Detailed Description . 148

7.3 src/Arduboy2.h File Reference . 148

7.3.1 Detailed Description . 149

7.3.2 Macro Definition Documentation . 150

7.3.2.1 ARDUBOY_LIB_VER . 150

7.3.2.2 ARDUBOY_UNIT_NAME_LEN . 150

7.3.2.3 BLACK . 150

7.3.2.4 CLEAR_BUFFER . 150

Generated by Doxygen

xiv CONTENTS

7.3.2.5 EEPROM_STORAGE_SPACE_START . 150

7.3.2.6 INVERT . 151

7.3.2.7 WHITE . 151

7.4 src/Arduboy2Audio.cpp File Reference . 151

7.4.1 Detailed Description . 151

7.5 src/Arduboy2Audio.h File Reference . 152

7.5.1 Detailed Description . 152

7.6 src/Arduboy2Beep.cpp File Reference . 153

7.6.1 Detailed Description . 153

7.7 src/Arduboy2Beep.h File Reference . 153

7.7.1 Detailed Description . 154

7.8 src/Arduboy2Core.cpp File Reference . 154

7.8.1 Detailed Description . 154

7.9 src/Arduboy2Core.h File Reference . 155

7.9.1 Detailed Description . 156

7.9.2 Macro Definition Documentation . 156

7.9.2.1 A_BUTTON . 156

7.9.2.2 ARDUBOY_NO_USB . 156

7.9.2.3 B_BUTTON . 157

7.9.2.4 BLUE_LED . 157

7.9.2.5 DOWN_BUTTON . 158

7.9.2.6 GREEN_LED . 158

7.9.2.7 HEIGHT . 158

7.9.2.8 LEFT_BUTTON . 158

7.9.2.9 PIN_SPEAKER_1 . 158

7.9.2.10 PIN_SPEAKER_2 . 158

7.9.2.11 RED_LED . 158

7.9.2.12 RGB_OFF . 158

7.9.2.13 RGB_ON . 159

7.9.2.14 RIGHT_BUTTON . 159

Generated by Doxygen

CONTENTS xv

7.9.2.15 UP_BUTTON . 159

7.9.2.16 WIDTH . 159

7.10 src/glcdfont.c File Reference . 159

7.10.1 Detailed Description . 160

7.11 src/Sprites.cpp File Reference . 160

7.11.1 Detailed Description . 160

7.12 src/Sprites.h File Reference . 161

7.12.1 Detailed Description . 161

7.13 src/SpritesB.cpp File Reference . 162

7.13.1 Detailed Description . 162

7.14 src/SpritesB.h File Reference . 162

7.14.1 Detailed Description . 163

7.15 src/SpritesCommon.h File Reference . 163

7.15.1 Detailed Description . 164

Index 165

Generated by Doxygen

Chapter 1

Arduboy2 Library

The Arduboy2 library is maintained in a git repository hosted on GitHub at:

https://github.com/MLXXXp/Arduboy2

The Arduboy2 library is a fork of the Arduboy library, which provides a standard application programming
interface (API) to the display, buttons and other hardware of the Arduino based Arduboy miniature game
system.

The name Arduboy2 doesn't indicate that it's for a new "next generation" of the Arduboy hardware. The name was
changed so it can coexist in the Arduino IDE with the current Arduboy library, without conflict. This way, existing
sketches can continue to use the Arduboy library and class, without changes, while new sketches can be written (or
old ones modified) to use and take advantage of the capabilities of the Arduboy2 class and library.

For notes on the differences between the Arduboy2 library and the original Arduboy library, and for information on
migrating a sketch currently using the Arduboy library, see the sections at the end of this document.

Library documentation

Comments in the library header files are formatted for the Doxygen document generation system. The HTML files
generated using the configuration file extras/Doxyfile can be found at:

https://MLXXXp.github.io/documents/Arduino/libraries/Arduboy2/Doxygen/html/index.←↩

html

A generated PDF file can be found at:

https://MLXXXp.github.io/documents/Arduino/libraries/Arduboy2/Doxygen/pdf/←↩

Arduboy2.pdf

Installation

The Arduboy2 library can be installed using the Arduino IDE Library Manager:

• In the Arduino IDE select from the menus: Sketch > Include Library > Manage Libraries...

• In the Library Manager Filter your search... field enter arduboy2.

• Click somewhere within the Arduboy2 entry.

• Click on the Install button.

For more library installation information see

Installing Additional Arduino Libraries - Using the Library Manager

https://github.com/
https://github.com/MLXXXp/Arduboy2
https://github.com/Arduboy/Arduboy
https://www.arduboy.com/
https://www.arduboy.com/
http://www.doxygen.org
https://MLXXXp.github.io/documents/Arduino/libraries/Arduboy2/Doxygen/html/index.html
https://MLXXXp.github.io/documents/Arduino/libraries/Arduboy2/Doxygen/html/index.html
https://MLXXXp.github.io/documents/Arduino/libraries/Arduboy2/Doxygen/pdf/Arduboy2.pdf
https://MLXXXp.github.io/documents/Arduino/libraries/Arduboy2/Doxygen/pdf/Arduboy2.pdf
https://www.arduino.cc/en/Guide/Libraries#toc3

2 Arduboy2 Library

Start up features

The begin() function, used to initialize the library, includes features that are intended to be available to all sketches
using the library (unless the sketch developer has chosen to disable one or more of them to free up some code
space):

The boot logo

At the start of the sketch, the ARDUBOY logo scrolls down from the top of the screen to the center.

The RGB LED lights red then green then blue while the logo is scrolling. (If your Arduboy is one of those that has
the RGB LED installed incorrectly, then it will light blue then off then red). For users who do not wish to have the
RGB LED flash during the boot logo sequence, a flag can be set in system EEPROM to have it remain off. The
included SetSystemEEPROM example sketch can be used to set this flag.

A user settable unit name of up to 6 characters can be saved in system EEPROM memory. If set, this name will
be briefly displayed at the bottom of the boot logo screen, after the logo stops scrolling down. This feature is only
available if the Arduboy2 class is used, not the Arduboy2Base class. This is because it requires the text display
functions, which are only available in the Arduboy2 class. A flag in system EEPROM controls whether or not the unit
name is displayed on the boot logo screen, regardless of whether the unit name itself has been set. The included
SetSystemEEPROM example sketch can be used to set both the unit name and this flag.

Once the logo display sequence completes, the sketch continues.

For developers who wish to quickly begin testing, or impatient users who want to go strait to playing their game,
the boot logo sequence can be bypassed by holding the RIGHT button while powering up, and then releasing it.
Alternatively, the RIGHT button can be pressed while the logo is scrolling down.

For users who wish to always disable the displaying of the boot logo sequence on boot up, a flag in system EEPROM
is available for this. The included SetSystemEEPROM example sketch can be used to set this flag.

"Flashlight" mode

If the UP button is pressed and held when the Arduboy is powered on, it enters flashlight mode. This turns the RGB
LED fully on, and all the pixels of the screen are lit, resulting in a bright white light suitable as a small flashlight. (For
an incorrect RGB LED, only the screen will light). To exit flashlight mode the Arduboy must be restarted.

Flashlight mode is also sometimes useful to allow uploading of new sketches, in case the sketch currently loaded
uses a large amount of RAM which creates a bootloader problem.

Audio mute control

Pressing and holding the B button when powering on will enter System Control mode. The RGB LED will light blue
(red for an incorrect LED) to indicate that you are in system control mode. You must continue to hold the B button
to remain in this mode. The only system control function currently implemented is audio mute control.

Pressing the UP button (while still holding B) will set a flag in system EEPROM indicating audio enabled. The RGB
LED will flash green once (off for an incorrect LED) to indicate this action.

Pressing the DOWN button (while still holding B) will set the flag to audio disabled (muted). The RGB LED will flash
red once (blue for an incorrect LED) to indicate this action.

Releasing the B button will exit system control mode and the sketch will continue.

Note that the audio control feature only sets a flag in EEPROM. Whatever code actually produces the sound must
use the audio.enabled() function to check and honor the mute state. Audio libraries written with the Arduboy system
in mind, such as the available ArduboyPlaytune and ArduboyTones, should do this. However, be aware that for
some sketches, which don't use the Arduboy2 or other compliant library and generate sounds in their own way, this
method of muting sound may not work.

Generated by Doxygen

3

Using the library in a sketch

As with most libraries, to use Arduboy2 in your sketch you must include its header file at the start:

#include <Arduboy2.h>

You must then create an Arduboy2 class object:

Arduboy2 arduboy;

Naming the object arduboy has become somewhat of a standard, but you can use a different name if you wish.

To initialize the library, you must call its begin() function. This is usually done at the start of the sketch's setup()
function:

void setup()
{

arduboy.begin();
// more setup code follows, if required

}

The rest of the Arduboy2 functions will now be available for use.

If you wish to use the Sprites class functions you must create a Sprites object:

Sprites sprites;

Sample sketches have been included with the library as examples of how to use it. To load an example, for exami-
nation and uploading to the Arduboy, using the Arduino IDE menus select:

File > Examples > Arduboy2

More information on writing sketches for the Arduboy can be found in the Arduboy Community Forum.

Using EEPROM in a sketch

The Arduboy2 library reserves an area at the start of EEPROM for storing system information, such as the current
audio mute state and the Unit Name and Unit ID. A sketch must not use this reserved area for its own purposes. A
sketch may use any EEPROM past this reserved area. The first EEPROM address available for sketch use is given
as the defined value EEPROM_STORAGE_SPACE_START

Audio control functions

The library includes an Arduboy2Audio class. This class provides functions to enable and disable (mute) sound and
also save the current mute state so that it remains in effect over power cycles and after loading a different sketch. It
doesn't contain anything to actually produce sound.

The Arduboy2Base class, and thus the Arduboy2 class, creates an Arduboy2Audio class object named audio, so a
sketch doesn't need to create its own Arduboy2Audio object.

Example:

#include <Arduboy2.h>

Arduboy2 arduboy;

// Arduboy2Audio functions can be called as follows:
arduboy.audio.on();
arduboy.audio.off();

Generated by Doxygen

http://community.arduboy.com/

4 Arduboy2 Library

Simple tone generation

The BeepPin1 and BeepPin2 classes are available to generate simple square wave tones using speaker pin 1 and
speaker pin 2 respectively. These classes are documented in file Arduboy2Beep.h. Also, BeepDemo is included as
one of the example sketches, which demonstrates basic use.

NOTE: These functions will not work with a DevKit Arduboy because the speaker pins used cannot be directly
controlled by a timer/counter. "Dummy" functions are provided so a sketch will compile and work properly but no
sound will be produced.

Ways to make more code space available to sketches

Sound effects and music

If all you want is to play single tones, using the built in BeepPin1 or BeepPin2 classes will be very efficient.

If you want to be able to play sequences of tones or background music, using the ArduboyTones library will be
more code efficient than using ArduboyPlaytune or most other sound libraries compatible with the Arduboy.
ArduboyTones even produces less code than the Arduino built in tone() function. You'll have to
decide on the appropriate library or functions you use to generate sound, based on the features required and how
much memory you want it to use.

Remove the text functions

If your sketch doesn't use any of the functions for displaying text, such as setCursor() and print(), you can remove
them. You could do this if your sketch generates whatever text it requires by some other means. Removing the
text functions frees up code by not including the font table and some code that is always pulled in by inheriting the
Arduino Print class.

To eliminate text capability in your sketch, when creating the library object simply use the Arduboy2Base class
instead of Arduboy2:

For example, if the object will be named arduboy:

Replace

Arduboy2 arduboy;

with

Arduboy2Base arduboy;

Generated by Doxygen

https://github.com/MLXXXp/ArduboyTones
https://github.com/Arduboy/ArduboyPlayTune
https://www.arduino.cc/en/Reference/Tone
http://playground.arduino.cc/Code/Printclass

5

Remove boot up features

As previously described, the begin() function includes features that are intended to be available to all sketches
during boot up. However, if you're looking to gain some code space, you can call boot() instead of begin(). This
will initialize the system but not include any of the extra boot up features. If desired, you can then add back in any
of these features by calling the functions that perform them. You will have to trade off between the desirability of
having a feature and how much memory you can recover by not including it.

A good way to use boot() instead of begin() is to copy the code from the body of the begin() function, in file
Arduboy2.cpp, into your sketch and then edit it to retain the boot() call and any feature calls desired.

As of this writing, the begin function is:

void Arduboy2Base::begin()
{

boot(); // raw hardware

display(); // blank the display (sBuffer is global, so cleared automatically)

flashlight(); // light the RGB LED and screen if UP button is being held.

// check for and handle buttons held during start up for system control
systemButtons();

audio.begin();

bootLogo();

waitNoButtons(); // wait for all buttons to be released
}

To incorporate it into your sketch just keep boot() and whatever feature calls are desired, if any. Comment out or
delete the rest. Remember to add the class object name in front of each function call, since they're now being called
from outside the class itself. If your sketch uses sound, it's a good idea to keep the call to audio.begin().

For example: Let's say a sketch has its own code to enable, disable and save the audio on/off setting, and wants to
keep the flashlight function. In setup() it could replace begin() with:

arduboy.boot(); // raw hardware

// *** This particular sketch clears the display soon, so it doesn’t need this:
// display(); // blank the display (sBuffer is global, so cleared automatically)

arduboy.flashlight(); // light the RGB LED and screen if UP button is being held.

// check for and handle buttons held during start up for system control
// systemButtons();

arduboy.audio.begin();

// bootLogo();

// waitNoButtons(); // wait for all buttons to be released

This saves whatever code display(), systemButtons(), bootLogo() and waitNoButtons() would use.

There are a few functions provided that are roughly equivalent to the standard functions used by begin() but which
use less code space.

• bootLogoCompressed(), bootLogoSpritesSelfMasked(), bootLogoSpritesOverwrite(), bootLogoSprites←↩

BSelfMasked() and bootLogoSpritesBOverwrite() will do the same as bootLogo() but will use draw←↩

Compressed(), or Sprites / SpritesB class drawSelfMasked() or drawOverwrite() functions respectively,
instead of drawBitmask(), to render the logo. If the sketch uses one of these functions, then using the boot
logo function that also uses it may reduce code size. It's best to try each of them to see which one produces
the smallest size.

• bootLogoText() can be used in place bootLogo() in the case where the sketch uses text functions. It renders
the logo as text instead of as a bitmap (so doesn't look as good).

• safeMode() can be used in place of flashlight() for cases where it's needed to allow uploading a new sketch
when the bootloader "magic key" problem is an issue. It only lights the red RGB LED, so you don't get the
bright light that is the primary purpose of flashlight().

Generated by Doxygen

6 Arduboy2 Library

Use the SpritesB class instead of Sprites

The SpritesB class has functions identical to the Sprites class. The difference is that SpritesB is optimized for small
code size rather than execution speed. If you want to use the sprites functions, and the slower speed of SpritesB
doesn't affect your sketch, you may be able to use it to gain some code space.

Even if the speed is acceptable when using SpritesB, you should still try using Sprites. In some cases Sprites will
produce less code than SpritesB, notably when only one of the functions is used.

You can easily switch between using Sprites or SpritesB by using one or the other to create an object instance:

Sprites sprites; // Use this to optimize for execution speed
SpritesB sprites; // Use this to (likely) optimize for code size

Eliminate the USB stack code

Warning: Although this will free up a fair amount of code and some RAM space, without an active USB interface
uploader programs will be unable to automatically force a reset to invoke the bootloader. This means the user will
have to manually initiate a reset in order to upload a new sketch. This can be an inconvenience or even frustrating
for a user, due to the fact that timing the sequence can sometimes be tricky. Therefore, using this technique should
be considered as a last resort. If it is used, the sketch documentation should state clearly what will be involved to
upload a new sketch.

The ARDUBOY_NO_USB macro is used to eliminate the USB code. The exitToBootloader() function is available to
make it easier for a user to invoke the bootloader. For more details, see the documentation provided for these.

What's different from Arduboy library V1.1

A main goal of Arduboy2 is to provide ways in which more code space can be freed for use by large sketches.
Another goal is to allow methods other than the tunes functions to be used to produce sounds. Arduboy2 remains
substantially compatible with Arduboy library V1.1, which was the latest stable release at the time of the
fork. Arduboy2 is based on the code targeted for Arduboy library V1.2, which was still in development and unre-
leased at the time it was forked.

Main differences between Arduboy2 and Arduboy V1.1 are:

• The ArduboyTunes subclass, which provided the tunes.xxx() functions, has been removed. It's functionality
is available in a separate ArduboyPlaytune library. By removing these functions, more code space
may become available because interrupt routines and other support code was being compiled in even if
a sketch didn't make use them. Another benefit is that without the automatic installation of timer interrupt
service routines, other audio generating functions and libraries, that need access to the same interrupts, can
now be used. Removal of the tunes functions is the main API incompatibility with Arduboy V1.1. Sketches
written to use tunes functions will need some minor modifications in order to make them work with Arduboy2
plus ArduboyPlaytune, ArduboyTones, or some other audio library.

• Arduboy library V1.1 uses timer 1 for the tunes functions. This causes problems when attempting to control
the Arduboy's RGB LED using PWM, such as with setRGBled(), because it also requires timer 1. Since the
tunes functionality has been removed from Arduboy2, there are no problems with using the RGB LED (except
those caused by the RGB LED being incorrectly installed). Of course, using an external library that uses timer
1, such as ArduboyPlaytune, may reintroduce the problems. However, using a library that doesn't use timer
1, such as ArduboyTones, is now an option.

Generated by Doxygen

https://github.com/Arduboy/Arduboy/releases/tag/v1.1
https://github.com/Arduboy/ArduboyPlayTune
https://github.com/MLXXXp/ArduboyTones

7

• The code to generate text output, using setCursor(), print(), etc., can be removed to free up code space,
if a sketch doesn't use any text functions. The Arduboy2 class includes the text functions but using the
Arduboy2Base class instead will eliminate them. With text functions included, the font table and some support
functions are always compiled in even if not used. The API for using text functions is the same as Arduboy
V1.1 with some additional functions added:

– setTextColor() and setTextBackground() allow for printing black text on a white background.

– getCursorX() and getCursorY() allow for determining the current text cursor position.

– The clear() function will now reset the text cursor to home position 0, 0.

• A new feature has been added which allows the audio on/off flag in system EEPROM to be configured by
the user when the sketch starts. The flag is used by the Arduboy and Arduboy2 audio subclass, along with
external sound functions and libraries, to provide a standardized sound mute capability. See the information
above, under the heading Audio mute control, for more details.

• The color parameter, which is the last parameter for most of the drawing functions, has been made optional
and will default to WHITE if not included in the call. This doesn't save any code but has been added as a
convenience, since most drawing functions are called with WHITE specified.

• A new function digitalWriteRGB() has been added to control the RGB LED digitally instead of using PWM.
This uses less code if just turning the RGB LEDs fully on or off is all that's required.

• The beginNoLogo() function is not included. This function could be used in Arduboy V1.1 in place of begin() to
suppress the displaying of the ARDUBOY logo and thus free up the code that it required. Instead, Arduboy2
allows a sketch to call boot() and then add in any extra features that begin() provides by calling their functions
directly after boot(), if desired.

• The ArduboyCore and ArduboyAudio base classes, previously only available to, and used to derive, the
Arduboy class, have been made publicly available for the benefit of developers who may wish to use them as
the base of an entirely new library. This change doesn't affect the existing API.

As of version 2.1.0 functionality from the Team A.R.G. Arglib library has been added:

• The sprite drawing functions, collision detection functions, and button handling functions that Team A.R.G.
incorporated from the ArduboyExtra project. The poll() function was renamed pollButtons() for clarity.
The Sprites class doesn't require a parameter for the constructor, whereas in Arglib a pointer to an Arduboy
class object is required.

• The drawCompressed() function, which allows compressed bitmaps to be drawn. Saving bitmaps in com-
pressed form may reduce overall sketch size.

Team A.R.G. has now migrated all of their games and demos to use the Arduboy2 library.

Migrating a sketch from Arduboy library V1.1 to Arduboy2

Since the Arduboy2 library can coexist in the Arduino IDE alongside the Arduboy library V1.1, a currently working
sketch that uses Arduboy V1.1 doesn't have to be migrated to Arduboy2. However, if you want to switch a sketch
to Arduboy2 for further development, in order to take advantage of any of the changes and enhancements, it's
generally relatively easy.

The Arduboy2 library, for the most part, is compatible with Arduboy library V1.1 but migrating a sketch to Arduboy2
will require some small changes, and more so if it uses the tunes functions, such as tunes.tone() or tunes.play←↩

Score().

Generated by Doxygen

http://www.team-arg.org/
https://github.com/yyyc514/ArduboyExtra

8 Arduboy2 Library

Required changes

The first thing to do is change the include for the library header file:

#include <Arduboy.h>

becomes

#include <Arduboy2.h>

If it was "Arduboy.h" (in quotes), it's still better to change it to <Arduboy2.h> (in angle brackets).

The same thing has to be done with creating the library object. (If the object name isn't arduboy, keep whatever
name is used.):

Arduboy arduboy;

becomes

Arduboy2 arduboy;

If the sketch doesn't use any tunes functions, there's a good chance this is all that has to be done to make it compile.

Sketch uses only tunes.tone() for sound

If the sketch has sound but only uses tunes.tone(), solutions are:

Solution 1: Switch to using Arduino tone()

An easy change is to use the Arduino built in tone() function. You can add a function to the sketch that wraps tone()
so that it works like tunes.tone(), like so:

// Wrap the Arduino tone() function so that the pin doesn’t have to be
// specified each time. Also, don’t play if audio is set to off.
void playTone(unsigned int frequency, unsigned long duration)
{

if (arduboy.audio.enabled() == true)
{
tone(PIN_SPEAKER_1, frequency, duration);

}
}

You then change all tunes.tone() calls to playTone() calls using the same parameter values. For example:

arduboy.tunes.tone(1000, 250);

becomes

playTone(1000, 250);

Generated by Doxygen

9

Solution 2: Switch to using the ArduboyTones library

Changing to the ArduboyTones library is slightly more complicated. The advantage is that it will generate less code
than using tone() and will also allow you to easily enhance the sketch to play tone sequences instead of just single
tones. ArduboyTones can also play each tone at either normal or a higher volume.

You have to add an include for the ArduboyTones header file:

#include <ArduboyTones.h>

You then have to create an object for the ArduboyTones class and pass it a pointer to the Arduboy2 audio.enabled()
function. This must go after the creation of the Arduboy2 object, like so:

Arduboy2 arduboy;
ArduboyTones sound(arduboy.audio.enabled);

You then change all Arduboy tunes.tone() calls to ArduboyTones tone() calls using the same parameter values. For
example:

arduboy.tunes.tone(1000, 250);

becomes

sound.tone(1000, 250);

See the ArduboyTones README file for more information on installing and using it.

Solution 3: Switch to using the ArduboyPlaytune library.

See the following for how to do this:

Sketch uses tunes.playScore()

If the sketch uses tunes.playScore(), probably the easiest solution is to use the ArduboyPlaytune library. Arduboy←↩

Playtune is essentially the code that was in the Arduboy V1.1 tunes subclass, which has been removed from
Arduboy2. It's been cleaned up and a few enhancements have been added, but all the Arduboy V1.1 tunes functions
are available.

You have to add an include for the ArduboyPlaytune header file:

#include <ArduboyPlaytune.h>

You then have to create an object for the ArduboyPlaytune class and pass it a pointer to the Arduboy2 audio.←↩

enabled() function. This must go after the creation of the Arduboy2 object, like so:

Arduboy2 arduboy;
ArduboyPlaytune tunes(arduboy.audio.enabled);

The sound channels must then be initialzed and assigned to the speaker pins. This code would go in the setup()
function:

Generated by Doxygen

https://github.com/MLXXXp/ArduboyTones

10 Arduboy2 Library

// audio setup
tunes.initChannel(PIN_SPEAKER_1);

#ifndef AB_DEVKIT
// if not a DevKit
tunes.initChannel(PIN_SPEAKER_2);

#else
// if it’s a DevKit
tunes.initChannel(PIN_SPEAKER_1); // use the same pin for both channels
tunes.toneMutesScore(true); // mute the score when a tone is sounding

#endif

If you name the ArduboyPlaytune object tunes as shown above, then you just have to remove the Arduboy object
name from any tunes calls. For example:

arduboy.tunes.playScore(mySong);

becomes

tunes.playScore(mySong);

See the ArduboyPlaytune library documentation for more information.

If you don't need to play scores containing two parts, and don't require tones to be played in parallel with a score
that's playing, then as an alternative to using ArduboyPlaytune you may wish to consider switching to ArduboyTones.
This may require a bit of work because any ArduboyPlaytune scores would have to be converted to ArduboyTones
format. It would involve changing note numbers to frequencies. This could be simplified by using the provided
NOTE_ defines. Also, durations would have to be converted, including adding silent "rest" tones as necessary.

The benefit of using ArduboyTones would be reduced code size and possibly easier addition of new sequences
without the need of a MIDI to Playtune format converter.

Sketch uses the beginNoLogo() function instead of begin()

The beginNoLogo() function has been removed. Instead, boot() can be used with additional functions following it to
add back in desired boot functionality. See the information above, under the heading Remove boot up features, for
more details. Assuming the object is named arduboy, a direct replacement for beginNoLogo() would be:

arduboy.boot();
arduboy.display();
arduboy.flashlight();
arduboy.audio.begin();

Generated by Doxygen

https://github.com/Arduboy/ArduboyPlayTune

Chapter 2

Software License Agreements

Software License Agreements

Licensed under the BSD 3-clause license:

Arduboy2 library:
Copyright (c) 2016-2018, Scott Allen
All rights reserved.

The Arduboy2 library was forked from the Arduboy library:
https://github.com/Arduboy/Arduboy
Copyright (c) 2016, Kevin "Arduboy" Bates
Copyright (c) 2016, Chris Martinez
Copyright (c) 2016, Josh Goebel
Copyright (c) 2016, Scott Allen
All rights reserved.
which is in turn partially based on the Adafruit_SSD1306 library
https://github.com/adafruit/Adafruit_SSD1306
Copyright (c) 2012, Adafruit Industries
All rights reserved.

SetSystemEEPROM example sketch:
Copyright (c) 2018, Scott Allen
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ’’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Licensed under the BSD 2-clause license:

Portions of the Arduboy library, and thus portions of the Arduboy2 library,

12 Software License Agreements

based on the Adafruit-GFX library:
https://github.com/adafruit/Adafruit-GFX-Library
Copyright (c) 2012 Adafruit Industries
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Licensed under the MIT license:

Code from ArduboyExtra:
https://github.com/yyyc514/ArduboyExtra
Copyright (c) 2015 Josh Goebel

Code for drawing compressed bitmaps:
https://github.com/TEAMarg/drawCompressed
Copyright (c) 2016 TEAM a.r.g.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Licensed under the GNU LGPL license:
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

ArduBreakout example sketch:
Original work:
Copyright (c) 2011 Sebastian Goscik
All rights reserved.
Modified work:
Copyright (c) 2016 Scott Allen
All rights reserved.

Buttons and HelloWorld example sketches:
Copyright (c) 2015 David Martinez
All rights reserved.

This work is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

Generated by Doxygen

13

License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

Placed in the public domain:

BeepDemo example sketch:
By Scott Allen

RGBled example sketch:
By Scott Allen

===

Generated by Doxygen

14 Software License Agreements

Generated by Doxygen

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Arduboy2Audio . 67
Arduboy2Core . 112

Arduboy2Base . 70
Arduboy2 . 21

BeepPin1 . 126
BeepPin2 . 131
Point . 134
Print . 136

Arduboy2 . 21

Rect . 137
Sprites . 139
SpritesB . 144

16 Hierarchical Index

Generated by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Arduboy2
The main functions provided for writing sketches for the Arduboy, including text output 21

Arduboy2Audio
Provide speaker and sound control . 67

Arduboy2Base
The main functions provided for writing sketches for the Arduboy, minus text output 70

Arduboy2Core
Lower level functions generally dealing directly with the hardware 112

BeepPin1
Play simple square wave tones using speaker pin 1 . 126

BeepPin2
Play simple square wave tones using speaker pin 2 . 131

Point
An object to define a single point for collision functions . 134

Print
The Arduino Print class is available for writing text to the screen buffer 136

Rect
A rectangle object for collision functions . 137

Sprites
A class for drawing animated sprites from image and mask bitmaps 139

SpritesB
A class for drawing animated sprites from image and mask bitmaps. Optimized for small code
size . 144

18 Class Index

Generated by Doxygen

Chapter 5

File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

src/ab_logo.c
The ARDUBOY logo bitmap . 147

src/Arduboy2.cpp
The Arduboy2Base and Arduboy2 classes and support objects and definitions 148

src/Arduboy2.h
The Arduboy2Base and Arduboy2 classes and support objects and definitions 148

src/Arduboy2Audio.cpp
The Arduboy2Audio class for speaker and sound control . 151

src/Arduboy2Audio.h
The Arduboy2Audio class for speaker and sound control . 152

src/Arduboy2Beep.cpp
Classes to generate simple square wave tones on the Arduboy speaker pins 153

src/Arduboy2Beep.h
Classes to generate simple square wave tones on the Arduboy speaker pins 153

src/Arduboy2Core.cpp
The Arduboy2Core class for Arduboy hardware initilization and control 154

src/Arduboy2Core.h
The Arduboy2Core class for Arduboy hardware initilization and control 155

src/glcdfont.c
The font definitions used to display text characters . 159

src/Sprites.cpp
A class for drawing animated sprites from image and mask bitmaps 160

src/Sprites.h
A class for drawing animated sprites from image and mask bitmaps 161

src/SpritesB.cpp
A class for drawing animated sprites from image and mask bitmaps. Optimized for small code
size . 162

src/SpritesB.h
A class for drawing animated sprites from image and mask bitmaps. Optimized for small code
size . 162

src/SpritesCommon.h
Common header file for sprite functions . 163

20 File Index

Generated by Doxygen

Chapter 6

Class Documentation

6.1 Arduboy2 Class Reference

The main functions provided for writing sketches for the Arduboy, including text output.

#include <Arduboy2.h>

22 Class Documentation

Inheritance diagram for Arduboy2:

Arduboy2

cursor_x
cursor_y
textColor
textBackground
textSize
textWrap

+ Arduboy2()
+ bootLogoText()
+ bootLogoExtra()
+ write()
+ drawChar()
+ setCursor()
+ getCursorX()
+ getCursorY()
+ setTextColor()
+ getTextColor()
and 7 more...

Print

Arduboy2Base

+ audio
+ frameCount
+ sBuffer
currentButtonState
previousButtonState
eachFrameMillis
thisFrameStart
justRendered
lastFrameDurationMs

+ Arduboy2Base()
+ begin()
+ flashlight()
+ systemButtons()
+ bootLogo()
+ bootLogoCompressed()
+ bootLogoSpritesSelfMasked()
+ bootLogoSpritesOverwrite()
+ bootLogoSpritesBSelfMasked()
+ bootLogoSpritesBOverwrite()
and 47 more...
+ drawPixel()
+ drawBitmap()
+ drawCompressed()
+ collide()
+ collide()
sysCtrlSound()
drawLogoBitmap()
drawLogoCompressed()
drawLogoSpritesSelfMasked()
drawLogoSpritesOverwrite()
drawLogoSpritesBSelfMasked()
drawLogoSpritesBOverwrite()

Arduboy2Core

+ Arduboy2Core()
+ idle()
+ LCDDataMode()
+ LCDCommandMode()
+ SPItransfer()
+ displayOff()
+ displayOn()
+ width()
+ height()
+ buttonsState()
+ paint8Pixels()
and 18 more...
setCPUSpeed8MHz()
bootSPI()
bootOLED()
bootPins()
bootPowerSaving()

Generated by Doxygen

6.1 Arduboy2 Class Reference 23

Collaboration diagram for Arduboy2:

Arduboy2

cursor_x
cursor_y
textColor
textBackground
textSize
textWrap

+ Arduboy2()
+ bootLogoText()
+ bootLogoExtra()
+ write()
+ drawChar()
+ setCursor()
+ getCursorX()
+ getCursorY()
+ setTextColor()
+ getTextColor()
and 7 more...

Print

Arduboy2Base

+ frameCount
+ sBuffer
currentButtonState
previousButtonState
eachFrameMillis
thisFrameStart
justRendered
lastFrameDurationMs

+ Arduboy2Base()
+ begin()
+ flashlight()
+ systemButtons()
+ bootLogo()
+ bootLogoCompressed()
+ bootLogoSpritesSelfMasked()
+ bootLogoSpritesOverwrite()
+ bootLogoSpritesBSelfMasked()
+ bootLogoSpritesBOverwrite()
and 47 more...
+ drawPixel()
+ drawBitmap()
+ drawCompressed()
+ collide()
+ collide()
sysCtrlSound()
drawLogoBitmap()
drawLogoCompressed()
drawLogoSpritesSelfMasked()
drawLogoSpritesOverwrite()
drawLogoSpritesBSelfMasked()
drawLogoSpritesBOverwrite()

Arduboy2Core

+ Arduboy2Core()
+ idle()
+ LCDDataMode()
+ LCDCommandMode()
+ SPItransfer()
+ displayOff()
+ displayOn()
+ width()
+ height()
+ buttonsState()
+ paint8Pixels()
and 18 more...
setCPUSpeed8MHz()
bootSPI()
bootOLED()
bootPins()
bootPowerSaving()

Arduboy2Audio

audio_enabled

+ begin()
+ on()
+ off()
+ toggle()
+ saveOnOff()
+ enabled()

 +audio

Public Member Functions

• void bootLogoText ()

Display the boot logo sequence using printed text instead of a bitmap.

• virtual void bootLogoExtra ()

Show the unit name at the bottom of the boot logo screen.

• virtual size_t write (uint8_t)

Generated by Doxygen

24 Class Documentation

Write a single ASCII character at the current text cursor location.

• void drawChar (int16_t x, int16_t y, unsigned char c, uint8_t color, uint8_t bg, uint8_t size)

Draw a single ASCII character at the specified location in the screen buffer.

• void setCursor (int16_t x, int16_t y)

Set the location of the text cursor.

• int16_t getCursorX ()

Get the X coordinate of the current text cursor position.

• int16_t getCursorY ()

Get the Y coordinate of the current text cursor position.

• void setTextColor (uint8_t color)

Set the text foreground color.

• uint8_t getTextColor ()

Get the currently set text foreground color.

• void setTextBackground (uint8_t bg)

Set the text background color.

• uint8_t getTextBackground ()

Get the currently set text background color.

• void setTextSize (uint8_t s)

Set the text character size.

• uint8_t getTextSize ()

Get the currently set text size.

• void setTextWrap (bool w)

Set or disable text wrap mode.

• bool getTextWrap ()

Get the currently set text wrap mode.

• void clear ()

Clear the display buffer and set the text cursor to location 0, 0.

• void begin ()

Initialize the hardware, display the boot logo, provide boot utilities, etc.

• void flashlight ()

Turn the RGB LED and display fully on to act as a small flashlight/torch.

• void systemButtons ()

Handle buttons held on startup for system control.

• void bootLogo ()

Display the boot logo sequence using drawBitmap().

• void bootLogoCompressed ()

Display the boot logo sequence using drawCompressed().

• void bootLogoSpritesSelfMasked ()

Display the boot logo sequence using Sprites::drawSelfMasked().

• void bootLogoSpritesOverwrite ()

Display the boot logo sequence using Sprites::drawOverwrite().

• void bootLogoSpritesBSelfMasked ()

Display the boot logo sequence using SpritesB::drawSelfMasked().

• void bootLogoSpritesBOverwrite ()

Display the boot logo sequence using SpritesB::drawOverwrite().

• void bootLogoShell (void(∗drawLogo)(int16_t))

Display the boot logo sequence using the provided function.

• void waitNoButtons ()

Wait until all buttons have been released.

• void display ()

Copy the contents of the display buffer to the display.

Generated by Doxygen

6.1 Arduboy2 Class Reference 25

• void display (bool clear)

Copy the contents of the display buffer to the display. The display buffer can optionally be cleared.

• uint8_t getPixel (uint8_t x, uint8_t y)

Returns the state of the given pixel in the screen buffer.

• void drawCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE)

Draw a circle of a given radius.

• void fillCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE)

Draw a filled-in circle of a given radius.

• void drawLine (int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color=WHITE)

Draw a line between two specified points.

• void drawRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a rectangle of a specified width and height.

• void drawFastVLine (int16_t x, int16_t y, uint8_t h, uint8_t color=WHITE)

Draw a vertical line.

• void drawFastHLine (int16_t x, int16_t y, uint8_t w, uint8_t color=WHITE)

Draw a horizontal line.

• void fillRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a filled-in rectangle of a specified width and height.

• void fillScreen (uint8_t color=WHITE)

Fill the screen buffer with the specified color.

• void drawRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=WHITE)

Draw a rectangle with rounded corners.

• void fillRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=WHITE)

Draw a filled-in rectangle with rounded corners.

• void drawTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color=WHITE)

Draw a triangle given the coordinates of each corner.

• void fillTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color=WHITE)

Draw a filled-in triangle given the coordinates of each corner.

• void drawSlowXYBitmap (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a bitmap from a horizontally oriented array in program memory.

• uint8_t ∗ getBuffer ()

Get a pointer to the display buffer in RAM.

• unsigned long generateRandomSeed ()

Create a seed suitable for use with a random number generator.

• void initRandomSeed ()

Seed the random number generator with a random value.

• void setFrameRate (uint8_t rate)

Set the frame rate used by the frame control functions.

• void setFrameDuration (uint8_t duration)

Set the frame rate, used by the frame control functions, by giving the duration of each frame.

• bool nextFrame ()

Indicate that it's time to render the next frame.

• bool nextFrameDEV ()

Indicate that it's time to render the next frame, and visually indicate if the code is running slower than the desired
frame rate. FOR USE DURING DEVELOPMENT

• bool everyXFrames (uint8_t frames)

Indicate if the specified number of frames has elapsed.

• int cpuLoad ()

Return the load on the CPU as a percentage.

• bool pressed (uint8_t buttons)

Test if the specified buttons are pressed.

Generated by Doxygen

26 Class Documentation

• bool notPressed (uint8_t buttons)

Test if the specified buttons are not pressed.

• void pollButtons ()

Poll the buttons and track their state over time.

• bool justPressed (uint8_t button)

Check if a button has just been pressed.

• bool justReleased (uint8_t button)

Check if a button has just been released.

• uint16_t readUnitID ()

Read the unit ID from system EEPROM.

• void writeUnitID (uint16_t id)

Write a unit ID to system EEPROM.

• uint8_t readUnitName (char ∗name)

Read the unit name from system EEPROM.

• void writeUnitName (char ∗name)

Write a unit name to system EEPROM.

• bool readShowBootLogoFlag ()

Read the "Show Boot Logo" flag in system EEPROM.

• void writeShowBootLogoFlag (bool val)

Write the "Show Boot Logo" flag in system EEPROM.

• bool readShowUnitNameFlag ()

Read the "Show Unit Name" flag in system EEPROM.

• void writeShowUnitNameFlag (bool val)

Write the "Show Unit Name" flag in system EEPROM.

• bool readShowBootLogoLEDsFlag ()

Read the "Show LEDs with boot logo" flag in system EEPROM.

• void writeShowBootLogoLEDsFlag (bool val)

Write the "Show LEDs with boot logo" flag in system EEPROM.

Static Public Member Functions

• static void drawPixel (int16_t x, int16_t y, uint8_t color=WHITE)

Set a single pixel in the display buffer to the specified color.

• static void drawBitmap (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a bitmap from an array in program memory.

• static void drawCompressed (int16_t sx, int16_t sy, const uint8_t ∗bitmap, uint8_t color=WHITE)

Draw a bitmap from an array of compressed data.

• static bool collide (Point point, Rect rect)

Test if a point falls within a rectangle.

• static bool collide (Rect rect1, Rect rect2)

Test if a rectangle is intersecting with another rectangle.

• static void idle ()

Idle the CPU to save power.

• static void LCDDataMode ()

Put the display into data mode.

• static void LCDCommandMode ()

Put the display into command mode.

• static void SPItransfer (uint8_t data)

Transfer a byte to the display.

• static void displayOff ()

Generated by Doxygen

6.1 Arduboy2 Class Reference 27

Turn the display off.
• static void displayOn ()

Turn the display on.
• static uint8_t width ()

Get the width of the display in pixels.
• static uint8_t height ()

Get the height of the display in pixels.
• static uint8_t buttonsState ()

Get the current state of all buttons as a bitmask.
• static void paint8Pixels (uint8_t pixels)

Paint 8 pixels vertically to the display.
• static void paintScreen (const uint8_t ∗image)

Paints an entire image directly to the display from program memory.
• static void paintScreen (uint8_t image[], bool clear=false)

Paints an entire image directly to the display from an array in RAM.
• static void blank ()

Blank the display screen by setting all pixels off.
• static void invert (bool inverse)

Invert the entire display or set it back to normal.
• static void allPixelsOn (bool on)

Turn all display pixels on or display the buffer contents.
• static void flipVertical (bool flipped)

Flip the display vertically or set it back to normal.
• static void flipHorizontal (bool flipped)

Flip the display horizontally or set it back to normal.
• static void sendLCDCommand (uint8_t command)

Send a single command byte to the display.
• static void setRGBled (uint8_t red, uint8_t green, uint8_t blue)

Set the light output of the RGB LED.
• static void setRGBled (uint8_t color, uint8_t val)

Set the brightness of one of the RGB LEDs without affecting the others.
• static void freeRGBled ()

Relinquish analog control of the RGB LED.
• static void digitalWriteRGB (uint8_t red, uint8_t green, uint8_t blue)

Set the RGB LEDs digitally, to either fully on or fully off.
• static void digitalWriteRGB (uint8_t color, uint8_t val)

Set one of the RGB LEDs digitally, to either fully on or fully off.
• static void boot ()

Initialize the Arduboy's hardware.
• static void safeMode ()

Allow upload when the bootloader "magic number" could be corrupted.
• static void delayShort (uint16_t ms) __attribute__((noinline))

Delay for the number of milliseconds, specified as a 16 bit value.
• static void exitToBootloader ()

Exit the sketch and start the bootloader.

Public Attributes

• Arduboy2Audio audio

An object created to provide audio control functions within this class.
• uint16_t frameCount

A counter which is incremented once per frame.

Generated by Doxygen

28 Class Documentation

Static Public Attributes

• static uint8_t sBuffer [(HEIGHT ∗WIDTH)/8]

The display buffer array in RAM.

6.1.1 Detailed Description

The main functions provided for writing sketches for the Arduboy, including text output.

This class is derived from Arduboy2Base. It provides text output functions in addition to all the functions inherited
from Arduboy2Base.

Note

A friend class named Arduboy2Ex is declared by this class. The intention is to allow a sketch to create an
Arduboy2Ex class which would have access to the private and protected members of the Arduboy2 class. It
is hoped that this may eliminate the need to create an entire local copy of the library, in order to extend the
functionality, in most circumstances.

See also

Arduboy2Base

Definition at line 1357 of file Arduboy2.h.

6.1.2 Member Function Documentation

6.1.2.1 void Arduboy2Core::allPixelsOn (bool on) [static], [inherited]

Turn all display pixels on or display the buffer contents.

Parameters

on true turns all pixels on. false displays the contents of the hardware display buffer.

Calling this function with a value of true will override the contents of the hardware display buffer and turn all pixels
on. The contents of the hardware buffer will remain unchanged.

Calling this function with a value of false will set the normal state of displaying the contents of the hardware
display buffer.

Note

All pixels will be lit even if the display is in inverted mode.

See also

invert()

Definition at line 416 of file Arduboy2Core.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 29

6.1.2.2 void Arduboy2Base::begin () [inherited]

Initialize the hardware, display the boot logo, provide boot utilities, etc.

This function should be called once near the start of the sketch, usually in setup(), before using any other
functions in this class. It initializes the display, displays the boot logo, provides "flashlight" and system control
features and initializes audio control.

Note

To free up some code space for use by the sketch, boot() can be used instead of begin() to allow the
elimination of some of the things that aren't really required, such as displaying the boot logo.

See also

boot()

Definition at line 48 of file Arduboy2.cpp.

6.1.2.3 void Arduboy2Core::blank () [static], [inherited]

Blank the display screen by setting all pixels off.

All pixels on the screen will be written with a value of 0 to turn them off.

Definition at line 394 of file Arduboy2Core.cpp.

6.1.2.4 void Arduboy2Core::boot () [static], [inherited]

Initialize the Arduboy's hardware.

This function initializes the display, buttons, etc.

This function is called by begin() so isn't normally called within a sketch. However, in order to free up some code
space, by eliminating some of the start up features, it can be called in place of begin(). The functions that begin()
would call after boot() can then be called to add back in some of the start up features, if desired. See the README
file or documentation on the main page for more details.

See also

Arduboy2Base::begin()

Definition at line 78 of file Arduboy2Core.cpp.

Generated by Doxygen

30 Class Documentation

6.1.2.5 void Arduboy2Base::bootLogo () [inherited]

Display the boot logo sequence using drawBitmap().

This function is called by begin() and can be called by a sketch after boot().

The Arduboy logo scrolls down from the top of the screen to the center while the RGB LEDs light in sequence.

The bootLogoShell() helper function is used to perform the actual sequence. The documentation for boot←↩

LogoShell() provides details on how it operates.

See also

begin() boot() bootLogoShell() Arduboy2::bootLogoText()

Definition at line 120 of file Arduboy2.cpp.

6.1.2.6 void Arduboy2Base::bootLogoCompressed () [inherited]

Display the boot logo sequence using drawCompressed().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses drawCompressed().

See also

bootLogo() begin() boot()

Definition at line 130 of file Arduboy2.cpp.

6.1.2.7 void Arduboy2::bootLogoExtra () [virtual]

Show the unit name at the bottom of the boot logo screen.

This function is called by bootLogoShell() and bootLogoText().

If a unit name has been saved in system EEPROM, it will be displayed at the bottom of the screen. This function
pauses for a short time to allow the name to be seen.

If the SYS_FLAG_UNAME flag in system EEPROM is cleared, this function will return without showing the unit
name or pausing.

Note

This function would not normally be called directly from within a sketch itself.

See also

readUnitName() writeUnitName() bootLogo() bootLogoShell() bootLogoText() writeShowUnitNameFlag() be-
gin()

Reimplemented from Arduboy2Base.

Definition at line 1241 of file Arduboy2.cpp.

6.1.2.8 void Arduboy2Base::bootLogoShell (void(∗)(int16_t) drawLogo) [inherited]

Display the boot logo sequence using the provided function.

Generated by Doxygen

6.1 Arduboy2 Class Reference 31

Parameters

drawLogo A reference to a function which will draw the boot logo at the given Y position.

This common function executes the sequence to display the boot logo. It is called by bootLogo() and other
similar functions which provide it with a reference to a function which will do the actual drawing of the logo.

This function calls bootLogoExtra() after the logo stops scrolling down, which derived classes can implement
to add additional information to the logo screen. The Arduboy2 class uses this to display the unit name.

If the RIGHT button is pressed while the logo is scrolling down, the boot logo sequence will be aborted. This can
be useful for developers who wish to quickly start testing, or anyone else who is impatient and wants to go straight
to the actual sketch.

If the SYS_FLAG_SHOW_LOGO_LEDS flag in system EEPROM is cleared, the RGB LEDs will not be flashed
during the logo display sequence.

If the SYS_FLAG_SHOW_LOGO flag in system EEPROM is cleared, this function will return without executing the
logo display sequence.

The prototype for the function provided to draw the logo is:

void drawLogo(int16_t y);

The y parameter is the Y offset for the top of the logo. It is expected that the logo will be 16 pixels high and centered
horizontally. This will result in the logo stopping in the middle of the screen at the end of the sequence. If the logo
height is not 16 pixels, the Y value can be adjusted to compensate.

See also

bootLogo() boot() Arduboy2::bootLogoExtra()

Definition at line 182 of file Arduboy2.cpp.

6.1.2.9 void Arduboy2Base::bootLogoSpritesBOverwrite () [inherited]

Display the boot logo sequence using SpritesB::drawOverwrite().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses SpritesB class functions.

See also

bootLogo() begin() boot() SpritesB

Definition at line 170 of file Arduboy2.cpp.

Generated by Doxygen

32 Class Documentation

6.1.2.10 void Arduboy2Base::bootLogoSpritesBSelfMasked () [inherited]

Display the boot logo sequence using SpritesB::drawSelfMasked().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses SpritesB class functions.

See also

bootLogo() begin() boot() SpritesB

Definition at line 160 of file Arduboy2.cpp.

6.1.2.11 void Arduboy2Base::bootLogoSpritesOverwrite () [inherited]

Display the boot logo sequence using Sprites::drawOverwrite().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses Sprites class functions.

See also

bootLogo() begin() boot() Sprites

Definition at line 150 of file Arduboy2.cpp.

6.1.2.12 void Arduboy2Base::bootLogoSpritesSelfMasked () [inherited]

Display the boot logo sequence using Sprites::drawSelfMasked().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses Sprites class functions.

See also

bootLogo() begin() boot() Sprites

Definition at line 140 of file Arduboy2.cpp.

6.1.2.13 void Arduboy2::bootLogoText ()

Display the boot logo sequence using printed text instead of a bitmap.

This function can be called by a sketch after boot() as an alternative to bootLogo().

The Arduboy logo scrolls down from the top of the screen to the center while the RGB LEDs light in sequence.

This function is the same as bootLogo() except the logo is printed as text instead of being rendered as a bitmap.
It can be used to save some code space in a case where the sketch is using the Print class functions to display text.
However, the logo will not look as good when printed as text as it does with the bitmap used by bootLogo().

If the RIGHT button is pressed while the logo is scrolling down, the boot logo sequence will be aborted. This can
be useful for developers who wish to quickly start testing, or anyone else who is impatient and wants to go straight
to the actual sketch.

If the SYS_FLAG_SHOW_LOGO_LEDS flag in system EEPROM is cleared, the RGB LEDs will not be flashed
during the logo display sequence.

If the SYS_FLAG_SHOW_LOGO flag in system EEPROM is cleared, this function will return without executing the
logo display sequence.

See also

bootLogo() boot() Arduboy2::bootLogoExtra()

Definition at line 1196 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 33

6.1.2.14 uint8_t Arduboy2Core::buttonsState () [static], [inherited]

Get the current state of all buttons as a bitmask.

Returns

A bitmask of the state of all the buttons.

The returned mask contains a bit for each button. For any pressed button, its bit will be 1. For released buttons their
associated bits will be 0.

The following defined mask values should be used for the buttons:

LEFT_BUTTON, RIGHT_BUTTON, UP_BUTTON, DOWN_BUTTON, A_BUTTON, B_BUTTON

Definition at line 530 of file Arduboy2Core.cpp.

6.1.2.15 bool Arduboy2Base::collide (Point point, Rect rect) [static], [inherited]

Test if a point falls within a rectangle.

Parameters

point A structure describing the location of the point.

rect A structure describing the location and size of the rectangle.

Returns

true if the specified point is within the specified rectangle.

This function is intended to detemine if an object, whose boundaries are are defined by the given rectangle, is in
contact with the given point.

See also

Point Rect

Definition at line 1071 of file Arduboy2.cpp.

6.1.2.16 bool Arduboy2Base::collide (Rect rect1, Rect rect2) [static], [inherited]

Test if a rectangle is intersecting with another rectangle.

Parameters

rect1,rect2 Structures describing the size and locations of the rectangles.

Generated by Doxygen

34 Class Documentation

Returns

true if the first rectangle is intersecting the second.

This function is intended to detemine if an object, whose boundaries are are defined by the given rectangle, is in
contact with another rectangular object.

See also

Rect

Definition at line 1077 of file Arduboy2.cpp.

6.1.2.17 int Arduboy2Base::cpuLoad () [inherited]

Return the load on the CPU as a percentage.

Returns

The load on the CPU as a percentage of the total frame time.

The returned value gives the time spent processing a frame as a percentage the total time allotted for a frame, as
determined by the frame rate.

This function normally wouldn't be used in the final program. It is intended for use during program development as
an aid in helping with frame timing.

Note

The percentage returned can be higher than 100 if more time is spent processing a frame than the time allotted
per frame. This would indicate that the frame rate should be made slower or the frame processing code should
be optimized to run faster.

See also

setFrameRate() nextFrame()

Definition at line 291 of file Arduboy2.cpp.

6.1.2.18 void Arduboy2Core::delayShort (uint16_t ms) [static], [inherited]

Delay for the number of milliseconds, specified as a 16 bit value.

Parameters

ms The delay in milliseconds.

This function works the same as the Arduino delay() function except the provided value is 16 bits long, so
the maximum delay allowed is 65535 milliseconds (about 65.5 seconds). Using this function instead of Arduino

Generated by Doxygen

6.1 Arduboy2 Class Reference 35

delay() will save a few bytes of code.

Definition at line 559 of file Arduboy2Core.cpp.

6.1.2.19 void Arduboy2Core::digitalWriteRGB (uint8_t red, uint8_t green, uint8_t blue) [static], [inherited]

Set the RGB LEDs digitally, to either fully on or fully off.

Parameters

red,green,blue Use value RGB_ON or RGB_OFF to set each LED.

The RGB LED is actually individual red, green and blue LEDs placed very close together in a single package. This
3 parameter version of the function will set each LED either on or off, to set the RGB LED to 7 different colors at
their highest brightness or turn it off.

The colors are as follows:

RED LED GREEN_LED BLUE_LED COLOR
------- --------- -------- -----
RGB_OFF RGB_OFF RGB_OFF OFF
RGB_OFF RGB_OFF RGB_ON Blue
RGB_OFF RGB_ON RGB_OFF Green
RGB_OFF RGB_ON RGB_ON Cyan
RGB_ON RGB_OFF RGB_OFF Red
RGB_ON RGB_OFF RGB_ON Magenta
RGB_ON RGB_ON RGB_OFF Yellow
RGB_ON RGB_ON RGB_ON White

Note

Using the RGB LED in analog mode will prevent digital control of the LED. To restore the ability to control the
LED digitally, use the freeRGBled() function.

Note

Many of the Kickstarter Arduboys were accidentally shipped with the RGB LED installed incorrectly. For these
units, the green LED cannot be lit. As long as the green led is set to off, turning on the red LED will actually
light the blue LED and turning on the blue LED will actually light the red LED. If the green LED is turned on,
none of the LEDs will light.

See also

digitalWriteRGB(uint8_t, uint8_t) setRGBled() freeRGBled()

Definition at line 490 of file Arduboy2Core.cpp.

6.1.2.20 void Arduboy2Core::digitalWriteRGB (uint8_t color, uint8_t val) [static], [inherited]

Set one of the RGB LEDs digitally, to either fully on or fully off.

Generated by Doxygen

36 Class Documentation

Parameters

color The name of the LED to set. The value given should be one of RED_LED, GREEN_LED or BLUE_LED.

val Indicates whether to turn the specified LED on or off. The value given should be RGB_ON or RGB_OFF.

This 2 parameter version of the function will set a single LED within the RGB LED either fully on or fully off. See the
description of the 3 parameter version of this function for more details on the RGB LED.

See also

digitalWriteRGB(uint8_t, uint8_t, uint8_t) setRGBled() freeRGBled()

Definition at line 504 of file Arduboy2Core.cpp.

6.1.2.21 void Arduboy2Base::display () [inherited]

Copy the contents of the display buffer to the display.

The contents of the display buffer in RAM are copied to the display and will appear on the screen.

See also

display(bool)

Definition at line 1030 of file Arduboy2.cpp.

6.1.2.22 void Arduboy2Base::display (bool clear) [inherited]

Copy the contents of the display buffer to the display. The display buffer can optionally be cleared.

Parameters

clear If true the display buffer will be cleared to zero. The defined value CLEAR_BUFFER should be used
instead of true to make it more meaningful.

Operation is the same as calling display() without parameters except additionally the display buffer will be
cleared if the parameter evaluates to true. (The defined value CLEAR_BUFFER can be used for this)

Using display(CLEAR_BUFFER) is faster and produces less code than calling display() followed by
clear().

See also

display() clear()

Definition at line 1035 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 37

6.1.2.23 void Arduboy2Core::displayOff () [static], [inherited]

Turn the display off.

The display will clear and be put into a low power mode. This can be used to extend battery life when a game is
paused or when a sketch doesn't require anything to be displayed for a relatively long period of time.

See also

displayOn()

Definition at line 285 of file Arduboy2Core.cpp.

6.1.2.24 void Arduboy2Core::displayOn () [static], [inherited]

Turn the display on.

Used to power up and reinitialize the display after calling displayOff().

Note

The previous call to displayOff() will have caused the display's buffer contents to be lost. The display
will have to be re-painted, which is usually done by calling display().

See also

displayOff()

Definition at line 296 of file Arduboy2Core.cpp.

6.1.2.25 void Arduboy2Base::drawBitmap (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t w, uint8_t h, uint8_t color =
WHITE) [static], [inherited]

Draw a bitmap from an array in program memory.

Parameters

x The X coordinate of the top left pixel affected by the bitmap.

y The Y coordinate of the top left pixel affected by the bitmap.

bitmap A pointer to the bitmap array in program memory.

w The width of the bitmap in pixels.

h The height of the bitmap in pixels.

color The color of pixels for bits set to 1 in the bitmap. If the value is INVERT, bits set to 1 will invert the
corresponding pixel. (optional; defaults to WHITE).

Bits set to 1 in the provided bitmap array will have their corresponding pixel set to the specified color. For bits set to
0 in the array, the corresponding pixel will be left unchanged.

Each byte in the array specifies a vertical column of 8 pixels, with the least significant bit at the top.

Generated by Doxygen

38 Class Documentation

The array must be located in program memory by using the PROGMEM modifier.

Definition at line 838 of file Arduboy2.cpp.

6.1.2.26 void Arduboy2::drawChar (int16_t x, int16_t y, unsigned char c, uint8_t color, uint8_t bg, uint8_t size)

Draw a single ASCII character at the specified location in the screen buffer.

Parameters

x The X coordinate, in pixels, for where to draw the character.

y The Y coordinate, in pixels, for where to draw the character.

c The ASCII value of the character to be drawn.
color the forground color of the character.

bg the background color of the character.

size The size of the character to draw.

The specified ASCII character is drawn starting at the provided coordinate. The point specified by the X and Y
coordinates will be the top left corner of the character.

Note

This is a low level function used by the write() function to draw a character. Although it's available as a
public function, it wouldn't normally be used. In most cases the Arduino Print class should be used for writing
text.

See also

Print write() setTextColor() setTextBackground() setTextSize()

Definition at line 1296 of file Arduboy2.cpp.

6.1.2.27 void Arduboy2Base::drawCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color = WHITE) [inherited]

Draw a circle of a given radius.

Parameters

x0 The X coordinate of the circle's center.
y0 The Y coordinate of the circle's center.

r The radius of the circle in pixels.

color The circle's color (optional; defaults to WHITE).

Definition at line 396 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 39

6.1.2.28 void Arduboy2Base::drawCompressed (int16_t sx, int16_t sy, const uint8_t ∗ bitmap, uint8_t color = WHITE)
[static], [inherited]

Draw a bitmap from an array of compressed data.

Parameters

sx The X coordinate of the top left pixel affected by the bitmap.

sy The Y coordinate of the top left pixel affected by the bitmap.

bitmap A pointer to the compressed bitmap array in program memory.

color The color of pixels for bits set to 1 in the bitmap. (optional; defaults to WHITE).

Draw a bitmap starting at the given coordinates from an array that has been compressed using an algorthm imple-
mented by Team A.R.G. For more information see: https://github.com/TEAMarg/drawCompressed
https://github.com/TEAMarg/Cabi

Bits set to 1 in the provided bitmap array will have their corresponding pixel set to the specified color. For bits set to
0 in the array, the corresponding pixel will be left unchanged.

The array must be located in program memory by using the PROGMEM modifier.

Definition at line 935 of file Arduboy2.cpp.

6.1.2.29 void Arduboy2Base::drawFastHLine (int16_t x, int16_t y, uint8_t w, uint8_t color = WHITE) [inherited]

Draw a horizontal line.

Parameters

x The X coordinate of the left start point.

y The Y coordinate of the left start point.

w The width of the line.
color The color of the line (optional; defaults to WHITE).

Definition at line 592 of file Arduboy2.cpp.

6.1.2.30 void Arduboy2Base::drawFastVLine (int16_t x, int16_t y, uint8_t h, uint8_t color = WHITE) [inherited]

Draw a vertical line.

Parameters

x The X coordinate of the upper start point.

y The Y coordinate of the upper start point.

h The height of the line.

color The color of the line (optional; defaults to WHITE).

Definition at line 582 of file Arduboy2.cpp.

Generated by Doxygen

https://github.com/TEAMarg/drawCompressed
https://github.com/TEAMarg/Cabi

40 Class Documentation

6.1.2.31 void Arduboy2Base::drawLine (int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color = WHITE)
[inherited]

Draw a line between two specified points.

Parameters

x0,x1 The X coordinates of the line ends.

y0,y1 The Y coordinates of the line ends.

color The line's color (optional; defaults to WHITE).

Draw a line from the start point to the end point using Bresenham's algorithm. The start and end points can be at
any location with respect to the other.

Definition at line 522 of file Arduboy2.cpp.

6.1.2.32 void Arduboy2Base::drawPixel (int16_t x, int16_t y, uint8_t color = WHITE) [static], [inherited]

Set a single pixel in the display buffer to the specified color.

Parameters

x The X coordinate of the pixel.

y The Y coordinate of the pixel.

color The color of the pixel (optional; defaults to WHITE).

The single pixel specified location in the display buffer is set to the specified color. The values WHITE or BLACK
can be used for the color. If the color parameter isn't included, the pixel will be set to WHITE.

Definition at line 325 of file Arduboy2.cpp.

6.1.2.33 void Arduboy2Base::drawRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color = WHITE)
[inherited]

Draw a rectangle of a specified width and height.

Parameters

x The X coordinate of the upper left corner.

y The Y coordinate of the upper left corner.

w The width of the rectangle.

h The height of the rectangle.

color The color of the pixel (optional; defaults to WHITE).

Definition at line 573 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 41

6.1.2.34 void Arduboy2Base::drawRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color = WHITE)
[inherited]

Draw a rectangle with rounded corners.

Parameters

x The X coordinate of the left edge.

y The Y coordinate of the top edge.

w The width of the rectangle.

h The height of the rectangle.

r The radius of the semicircles forming the corners.

color The color of the rectangle (optional; defaults to WHITE).

Definition at line 701 of file Arduboy2.cpp.

6.1.2.35 void Arduboy2Base::drawSlowXYBitmap (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t w, uint8_t h, uint8_t
color = WHITE) [inherited]

Draw a bitmap from a horizontally oriented array in program memory.

Parameters

x The X coordinate of the top left pixel affected by the bitmap.

y The Y coordinate of the top left pixel affected by the bitmap.

bitmap A pointer to the bitmap array in program memory.

w The width of the bitmap in pixels.

h The height of the bitmap in pixels.

color The color of pixels for bits set to 1 in the bitmap. (optional; defaults to WHITE).

Bits set to 1 in the provided bitmap array will have their corresponding pixel set to the specified color. For bits set to
0 in the array, the corresponding pixel will be left unchanged.

Each byte in the array specifies a horizontal row of 8 pixels, with the most significant bit at the left end of the row.

The array must be located in program memory by using the PROGMEM modifier.

Note

This function requires a lot of additional CPU power and will draw images slower than drawBitmap(),
which uses bitmaps that are stored in a format that allows them to be directly written to the screen. It is
recommended you use drawBitmap() when possible.

Definition at line 884 of file Arduboy2.cpp.

6.1.2.36 void Arduboy2Base::drawTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color =
WHITE) [inherited]

Draw a triangle given the coordinates of each corner.

Generated by Doxygen

42 Class Documentation

Parameters

x0,x1,x2 The X coordinates of the corners.

y0,y1,y2 The Y coordinates of the corners.

color The triangle's color (optional; defaults to WHITE).

A triangle is drawn by specifying each of the three corner locations. The corners can be at any position with respect
to the others.

Definition at line 727 of file Arduboy2.cpp.

6.1.2.37 bool Arduboy2Base::everyXFrames (uint8_t frames) [inherited]

Indicate if the specified number of frames has elapsed.

Parameters

frames The desired number of elapsed frames.

Returns

true if the specified number of frames has elapsed.

This function should be called with the same value each time for a given event. It will return true if the given
number of frames has elapsed since the previous frame in which it returned true.

For example, if you wanted to fire a shot every 5 frames while the A button is being held down:

if (arduboy.everyXFrames(5)) {
if arduboy.pressed(A_BUTTON) {
fireShot();

}
}

See also

setFrameRate() nextFrame()

Definition at line 245 of file Arduboy2.cpp.

6.1.2.38 void Arduboy2Core::exitToBootloader () [static], [inherited]

Exit the sketch and start the bootloader.

The sketch will exit and the bootloader will be started in command mode. The effect will be similar to pressing the
reset button.

This function is intended to be used to allow uploading a new sketch, when the USB code has been removed to
gain more code space. Ideally, the sketch would present a "New Sketch Upload" menu or prompt telling the user
to "Press and hold the DOWN button when the procedure to upload a new sketch has been initiated". The sketch
would then wait for the DOWN button to be pressed and then call this function.

See also

ARDUBOY_NO_USB

Definition at line 564 of file Arduboy2Core.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 43

6.1.2.39 void Arduboy2Base::fillCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color = WHITE) [inherited]

Draw a filled-in circle of a given radius.

Parameters

x0 The X coordinate of the circle's center.
y0 The Y coordinate of the circle's center.

r The radius of the circle in pixels.

color The circle's color (optional; defaults to WHITE).

Definition at line 478 of file Arduboy2.cpp.

6.1.2.40 void Arduboy2Base::fillRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color = WHITE) [inherited]

Draw a filled-in rectangle of a specified width and height.

Parameters

x The X coordinate of the upper left corner.

y The Y coordinate of the upper left corner.

w The width of the rectangle.

h The height of the rectangle.

color The color of the pixel (optional; defaults to WHITE).

Definition at line 643 of file Arduboy2.cpp.

6.1.2.41 void Arduboy2Base::fillRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color = WHITE)
[inherited]

Draw a filled-in rectangle with rounded corners.

Parameters

x The X coordinate of the left edge.

y The Y coordinate of the top edge.

w The width of the rectangle.

h The height of the rectangle.

r The radius of the semicircles forming the corners.

color The color of the rectangle (optional; defaults to WHITE).

Definition at line 716 of file Arduboy2.cpp.

6.1.2.42 void Arduboy2Base::fillScreen (uint8_t color = WHITE) [inherited]

Fill the screen buffer with the specified color.

Generated by Doxygen

44 Class Documentation

Parameters

color The fill color (optional; defaults to WHITE).

Definition at line 652 of file Arduboy2.cpp.

6.1.2.43 void Arduboy2Base::fillTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color =
WHITE) [inherited]

Draw a filled-in triangle given the coordinates of each corner.

Parameters

x0,x1,x2 The X coordinates of the corners.

y0,y1,y2 The Y coordinates of the corners.

color The triangle's color (optional; defaults to WHITE).

A triangle is drawn by specifying each of the three corner locations. The corners can be at any position with respect
to the others.

Definition at line 735 of file Arduboy2.cpp.

6.1.2.44 void Arduboy2Base::flashlight () [inherited]

Turn the RGB LED and display fully on to act as a small flashlight/torch.

Checks if the UP button is pressed and if so turns the RGB LED and all display pixels fully on. If the UP button is
detected, this function does not exit. The Arduboy must be restarted after flashlight mode is used.

This function is called by begin() and can be called by a sketch after boot().

Note

This function also contains code to address a problem with uploading a new sketch, for sketches that interfere
with the bootloader "magic number". This problem occurs with certain sketches that use large amounts of
RAM. Being in flashlight mode when uploading a new sketch can fix this problem.
Therefore, for sketches that potentially could cause this problem, and use boot() instead of begin(), it is
recommended that a call to flashlight() be included after calling boot(). If program space is limited,
safeMode() can be used instead of flashlight().

See also

begin() boot() safeMode()

Definition at line 73 of file Arduboy2.cpp.

6.1.2.45 void Arduboy2Core::flipHorizontal (bool flipped) [static], [inherited]

Flip the display horizontally or set it back to normal.

Generated by Doxygen

6.1 Arduboy2 Class Reference 45

Parameters

flipped true will set horizontal flip mode. false will set normal horizontal orientation.

Calling this function with a value of true will cause the X coordinate to start at the left edge of the display instead
of the right, effectively flipping the display horizontally.

Once in horizontal flip mode, it will remain this way until normal horizontal mode is set by calling this function with a
value of false.

See also

flipVertical()

Definition at line 428 of file Arduboy2Core.cpp.

6.1.2.46 void Arduboy2Core::flipVertical (bool flipped) [static], [inherited]

Flip the display vertically or set it back to normal.

Parameters

flipped true will set vertical flip mode. false will set normal vertical orientation.

Calling this function with a value of true will cause the Y coordinate to start at the bottom edge of the display
instead of the top, effectively flipping the display vertically.

Once in vertical flip mode, it will remain this way until normal vertical mode is set by calling this function with a value
of false.

See also

flipHorizontal()

Definition at line 422 of file Arduboy2Core.cpp.

6.1.2.47 void Arduboy2Core::freeRGBled () [static], [inherited]

Relinquish analog control of the RGB LED.

Using the RGB LED in analog mode prevents further use of the LED in digital mode. This function will restore the
pins used for the LED, so it can be used in digital mode.

See also

digitalWriteRGB() setRGBled()

Definition at line 481 of file Arduboy2Core.cpp.

Generated by Doxygen

46 Class Documentation

6.1.2.48 unsigned long Arduboy2Base::generateRandomSeed () [inherited]

Create a seed suitable for use with a random number generator.

Returns

A random value that can be used to seed a random number generator.

The returned value will be a random value derived from entropy from an ADC reading of a floating pin combined
with the microseconds since boot.

This method is still most effective when called after a semi-random time, such as after a user hits a button to start a
game or other semi-random event.

See also

initRandomSeed()

Definition at line 296 of file Arduboy2.cpp.

6.1.2.49 uint8_t ∗ Arduboy2Base::getBuffer () [inherited]

Get a pointer to the display buffer in RAM.

Returns

A pointer to the display buffer array in RAM.

The location of the display buffer in RAM, which is displayed using display(), can be gotten using this function.
The buffer can then be read and directly manipulated.

Note

The display buffer array, sBuffer, is public. A sketch can access it directly. Doing so may be more efficient
than accessing it via the pointer returned by getBuffer().

See also

sBuffer

Definition at line 1040 of file Arduboy2.cpp.

6.1.2.50 int16_t Arduboy2::getCursorX ()

Get the X coordinate of the current text cursor position.

Returns

The X coordinate of the current text cursor position.

The X coordinate returned is a pixel location with 0 indicating the leftmost column.

See also

getCursorY() setCursor()

Definition at line 1340 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 47

6.1.2.51 int16_t Arduboy2::getCursorY ()

Get the Y coordinate of the current text cursor position.

Returns

The Y coordinate of the current text cursor position.

The Y coordinate returned is a pixel location with 0 indicating the topmost row.

See also

getCursorX() setCursor()

Definition at line 1345 of file Arduboy2.cpp.

6.1.2.52 uint8_t Arduboy2Base::getPixel (uint8_t x, uint8_t y) [inherited]

Returns the state of the given pixel in the screen buffer.

Parameters

x The X coordinate of the pixel.

y The Y coordinate of the pixel.

Returns

WHITE if the pixel is on or BLACK if the pixel is off.

Definition at line 389 of file Arduboy2.cpp.

6.1.2.53 uint8_t Arduboy2::getTextBackground ()

Get the currently set text background color.

Returns

The background color that will be used to display any following text.

See also

setTextBackground()

Definition at line 1365 of file Arduboy2.cpp.

Generated by Doxygen

48 Class Documentation

6.1.2.54 uint8_t Arduboy2::getTextColor ()

Get the currently set text foreground color.

Returns

The color that will be used to display any following text.

See also

setTextColor()

Definition at line 1355 of file Arduboy2.cpp.

6.1.2.55 uint8_t Arduboy2::getTextSize ()

Get the currently set text size.

Returns

The size that will be used for any following text.

See also

setTextSize()

Definition at line 1376 of file Arduboy2.cpp.

6.1.2.56 bool Arduboy2::getTextWrap ()

Get the currently set text wrap mode.

Returns

true if text wrapping is on, false if wrapping is off.

See also

setTextWrap()

Definition at line 1386 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 49

6.1.2.57 uint8_t Arduboy2Core::height () [static], [inherited]

Get the height of the display in pixels.

Returns

The height of the display in pixels.

Note

In most cases, the defined value HEIGHT would be better to use instead of this function.

Definition at line 303 of file Arduboy2Core.cpp.

6.1.2.58 void Arduboy2Core::idle () [static], [inherited]

Idle the CPU to save power.

This puts the CPU in idle sleep mode. You should call this as often as you can for the best power savings. The timer
0 overflow interrupt will wake up the chip every 1ms, so even at 60 FPS a well written app should be able to sleep
maybe half the time in between rendering it's own frames.

Definition at line 268 of file Arduboy2Core.cpp.

6.1.2.59 void Arduboy2Base::initRandomSeed () [inherited]

Seed the random number generator with a random value.

The Arduino random number generator is seeded with a random value derived from entropy from an ADC reading of
a floating pin combined with the microseconds since boot. The seed value is provided by calling the generate←↩

RandomSeed() function.

This method is still most effective when called after a semi-random time, such as after a user hits a button to start a
game or other semi-random event.

See also

generateRandomSeed()

Definition at line 313 of file Arduboy2.cpp.

6.1.2.60 void Arduboy2Core::invert (bool inverse) [static], [inherited]

Invert the entire display or set it back to normal.

Parameters

inverse true will invert the display. false will set the display to no-inverted.

Generated by Doxygen

50 Class Documentation

Calling this function with a value of true will set the display to inverted mode. A pixel with a value of 0 will be on
and a pixel set to 1 will be off.

Once in inverted mode, the display will remain this way until it is set back to non-inverted mode by calling this
function with false.

Definition at line 409 of file Arduboy2Core.cpp.

6.1.2.61 bool Arduboy2Base::justPressed (uint8_t button) [inherited]

Check if a button has just been pressed.

Parameters

button The button to test for. Only one button should be specified.

Returns

true if the specified button has just been pressed.

Return true if the given button was pressed between the latest call to pollButtons() and previous call to
pollButtons(). If the button has been held down over multiple polls, this function will return false.

There is no need to check for the release of the button since it must have been released for this function to return
true when pressed again.

This function should only be used to test a single button.

See also

pollButtons() justReleased()

Definition at line 1061 of file Arduboy2.cpp.

6.1.2.62 bool Arduboy2Base::justReleased (uint8_t button) [inherited]

Check if a button has just been released.

Parameters

button The button to test for. Only one button should be specified.

Returns

true if the specified button has just been released.

Return true if the given button, having previously been pressed, was released between the latest call to poll←↩

Buttons() and previous call to pollButtons(). If the button has remained released over multiple polls, this
function will return false.

Generated by Doxygen

6.1 Arduboy2 Class Reference 51

There is no need to check for the button having been pressed since it must have been previously pressed for this
function to return true upon release.

This function should only be used to test a single button.

Note

There aren't many cases where this function would be needed. Wanting to know if a button has been released,
without knowing when it was pressed, is uncommon.

See also

pollButtons() justPressed()

Definition at line 1066 of file Arduboy2.cpp.

6.1.2.63 void Arduboy2Core::LCDCommandMode () [static], [inherited]

Put the display into command mode.

When placed in command mode, data that is sent to the display will be treated as commands.

See the SSD1306 controller and OLED display documents for available commands and command sequences.

Links:

• https://www.adafruit.com/datasheets/SSD1306.pdf

• http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.←↩

pdf

Note

This is a low level function that is not intended for general use in a sketch. It has been made public and
documented for use by derived classes.

See also

LCDDataMode() sendLCDCommand() SPItransfer()

Definition at line 222 of file Arduboy2Core.cpp.

6.1.2.64 void Arduboy2Core::LCDDataMode () [static], [inherited]

Put the display into data mode.

When placed in data mode, data that is sent to the display will be considered as data to be displayed.

Note

This is a low level function that is not intended for general use in a sketch. It has been made public and
documented for use by derived classes.

See also

LCDCommandMode() SPItransfer()

Definition at line 217 of file Arduboy2Core.cpp.

Generated by Doxygen

https://www.adafruit.com/datasheets/SSD1306.pdf
http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.pdf
http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.pdf

52 Class Documentation

6.1.2.65 bool Arduboy2Base::nextFrame () [inherited]

Indicate that it's time to render the next frame.

Returns

true if it's time for the next frame.

When this function returns true, the amount of time has elapsed to display the next frame, as specified by set←↩

FrameRate().

This function will normally be called at the start of the rendering loop which would wait for true to be returned
before rendering and displaying the next frame.

example:

void loop() {
if (!arduboy.nextFrame()) {
return; // go back to the start of the loop

}
// render and display the next frame

}

See also

setFrameRate() setFrameDuration() nextFrameDEV()

Definition at line 250 of file Arduboy2.cpp.

6.1.2.66 bool Arduboy2Base::nextFrameDEV () [inherited]

Indicate that it's time to render the next frame, and visually indicate if the code is running slower than the desired
frame rate. FOR USE DURING DEVELOPMENT

Returns

true if it's time for the next frame.

This function is intended to be used in place of nextFrame() during the development of a sketch. It does the
same thing as nextFrame() but additionally will light the yellow TX LED (at the bottom, to the left of the U←↩

SB connector) whenever a frame takes longer to generate than the time allotted per frame, as determined by the
setFrameRate() function.

Therefore, whenever the TX LED comes on (while not communicating over USB), it indicates that the sketch is
running slower than the desired rate set by setFrameRate(). In this case the developer may wish to set a
slower frame rate, or reduce or optimize the code for such frames.

Note

Once a sketch is ready for release, it would be expected that nextFrameDEV() calls be restored to next←↩

Frame().

See also

nextFrame() cpuLoad() setFrameRate()

Definition at line 278 of file Arduboy2.cpp.

6.1.2.67 bool Arduboy2Base::notPressed (uint8_t buttons) [inherited]

Test if the specified buttons are not pressed.

Generated by Doxygen

6.1 Arduboy2 Class Reference 53

Parameters

buttons A bit mask indicating which buttons to test. (Can be a single button)

Returns

true if all buttons in the provided mask are currently released.

Read the state of the buttons and return true if all the buttons in the specified mask are currently released.

Example: if (notPressed(UP_BUTTON))

Note

This function does not perform any button debouncing.

Definition at line 1050 of file Arduboy2.cpp.

6.1.2.68 void Arduboy2Core::paint8Pixels (uint8_t pixels) [static], [inherited]

Paint 8 pixels vertically to the display.

Parameters

pixels A byte whose bits specify a vertical column of 8 pixels.

A byte representing a vertical column of 8 pixels is written to the display at the current page and column address.
The address is then incremented. The page/column address will wrap to the start of the display (the top left) when
it increments past the end (lower right).

The least significant bit represents the top pixel in the column. A bit set to 1 is lit, 0 is unlit.

Example:

X = lit pixels, . = unlit pixels

blank() paint8Pixels() 0xFF, 0, 0xF0, 0, 0x0F
v TOP LEFT corner (8x9) v TOP LEFT corner
. (page 1) X . . . X . . . (page 1)
. X . . . X . . .
. X . . . X . . .
. X . . . X . . .
. X . X
. X . X
. X . X
. (end of page 1) X . X (end of page 1)
. (page 2) (page 2)

Definition at line 308 of file Arduboy2Core.cpp.

6.1.2.69 void Arduboy2Core::paintScreen (const uint8_t ∗ image) [static], [inherited]

Paints an entire image directly to the display from program memory.

Generated by Doxygen

54 Class Documentation

Parameters

image A byte array in program memory representing the entire contents of the display.

The contents of the specified array in program memory is written to the display. Each byte in the array represents
a vertical column of 8 pixels with the least significant bit at the top. The bytes are written starting at the top left,
progressing horizontally and wrapping at the end of each row, to the bottom right. The size of the array must exactly
match the number of pixels in the entire display.

See also

paint8Pixels()

Definition at line 313 of file Arduboy2Core.cpp.

6.1.2.70 void Arduboy2Core::paintScreen (uint8_t image[], bool clear = false) [static], [inherited]

Paints an entire image directly to the display from an array in RAM.

Parameters

image A byte array in RAM representing the entire contents of the display.

clear If true the array in RAM will be cleared to zeros upon return from this function. If false the RAM
buffer will remain unchanged. (optional; defaults to false)

The contents of the specified array in RAM is written to the display. Each byte in the array represents a vertical
column of 8 pixels with the least significant bit at the top. The bytes are written starting at the top left, progressing
horizontally and wrapping at the end of each row, to the bottom right. The size of the array must exactly match the
number of pixels in the entire display.

If parameter clear is set to true the RAM array will be cleared to zeros after its contents are written to the
display.

See also

paint8Pixels()

Definition at line 327 of file Arduboy2Core.cpp.

6.1.2.71 void Arduboy2Base::pollButtons () [inherited]

Poll the buttons and track their state over time.

Read and save the current state of the buttons and also keep track of the button state when this function was
previouly called. These states are used by the justPressed() and justReleased() functions to determine
if a button has changed state between now and the previous call to pollButtons().

This function should be called once at the start of each new frame.

The justPressed() and justReleased() functions rely on this function.

example:

Generated by Doxygen

6.1 Arduboy2 Class Reference 55

void loop() {
if (!arduboy.nextFrame()) {
return;

}
arduboy.pollButtons();

// use justPressed() as necessary to determine if a button was just pressed

Note

As long as the elapsed time between calls to this function is long enough, buttons will be naturally debounced.
Calling it once per frame at a frame rate of 60 or lower (or possibly somewhat higher), should be sufficient.

See also

justPressed() justReleased()

Definition at line 1055 of file Arduboy2.cpp.

6.1.2.72 bool Arduboy2Base::pressed (uint8_t buttons) [inherited]

Test if the specified buttons are pressed.

Parameters

buttons A bit mask indicating which buttons to test. (Can be a single button)

Returns

true if all buttons in the provided mask are currently pressed.

Read the state of the buttons and return true if all the buttons in the specified mask are being pressed.

Example: if (pressed(LEFT_BUTTON + A_BUTTON))

Note

This function does not perform any button debouncing.

Definition at line 1045 of file Arduboy2.cpp.

6.1.2.73 bool Arduboy2Base::readShowBootLogoFlag () [inherited]

Read the "Show Boot Logo" flag in system EEPROM.

Returns

true if the flag is set to indicate that the boot logo sequence should be displayed. false if the flag is set to
not display the boot logo sequence.

The "Show Boot Logo" flag is used to determine whether the system boot logo sequence is to be displayed when
the system boots up. This function returns the value of this flag.

See also

writeShowBootLogoFlag() bootLogo()

Definition at line 1133 of file Arduboy2.cpp.

Generated by Doxygen

56 Class Documentation

6.1.2.74 bool Arduboy2Base::readShowBootLogoLEDsFlag () [inherited]

Read the "Show LEDs with boot logo" flag in system EEPROM.

Returns

true if the flag is set to indicate that the RGB LEDs should be flashed. false if the flag is set to leave the
LEDs off.

The "Show LEDs with boot logo" flag is used to determine whether the RGB LEDs should be flashed in sequence
while the boot logo is being displayed. This function returns the value of this flag.

See also

writeShowBootLogoLEDsFlag()

Definition at line 1159 of file Arduboy2.cpp.

6.1.2.75 bool Arduboy2Base::readShowUnitNameFlag () [inherited]

Read the "Show Unit Name" flag in system EEPROM.

Returns

true if the flag is set to indicate that the unit name should be displayed. false if the flag is set to not display
the unit name.

The "Show Unit Name" flag is used to determine whether the system unit name is to be displayed at the end of the
boot logo sequence. This function returns the value of this flag.

See also

writeShowUnitNameFlag() writeUnitName() readUnitName() Arduboy2::bootLogoExtra()

Definition at line 1146 of file Arduboy2.cpp.

6.1.2.76 uint16_t Arduboy2Base::readUnitID () [inherited]

Read the unit ID from system EEPROM.

Returns

The value of the unit ID stored in system EEPROM.

This function reads the unit ID that has been set in system EEPROM. The ID can be any value. It is intended to
allow different units to be uniquely identified.

See also

writeUnitID() readUnitName()

Definition at line 1085 of file Arduboy2.cpp.

6.1.2.77 uint8_t Arduboy2Base::readUnitName (char ∗ name) [inherited]

Read the unit name from system EEPROM.

Generated by Doxygen

6.1 Arduboy2 Class Reference 57

Parameters

name A pointer to a string array variable where the unit name will be placed. The string will be up to 6
characters and terminated with a null (0x00) character, so the provided array must be at least 7 bytes
long.

Returns

The length of the string (0-6).

This function reads the unit name that has been set in system EEPROM. The name is in ASCII and can contain any
values except 0xFF and the null (0x00) terminator value.

The name can be used for any purpose. It could identify the owner or give the unit itself a nickname. A sketch could
use it to automatically fill in a name or initials in a high score table, or display it as the "player" when the opponent
is the computer.

Note

Sketches can use the defined value ARDUBOY_UNIT_NAME_LEN instead of hard coding a 6 when working
with the unit name. For example, to allocate a buffer and read the unit name into it:

// Buffer for maximum name length plus the terminator
char unitName[ARDUBOY_UNIT_NAME_LEN + 1];

// The actual name length
byte unitNameLength;

unitNameLength = arduboy.readUnitName(unitName);

See also

writeUnitName() readUnitID() Arduboy2::bootLogoExtra()

Definition at line 1097 of file Arduboy2.cpp.

6.1.2.78 void Arduboy2Core::safeMode () [static], [inherited]

Allow upload when the bootloader "magic number" could be corrupted.

If the UP button is held when this function is entered, the RGB LED will be lit and timer 0 will be disabled, then
the sketch will remain in a tight loop. This is to address a problem with uploading a new sketch, for sketches that
interfere with the bootloader "magic number". The problem occurs with certain sketches that use large amounts of
RAM.

This function should be called after boot() in sketches that potentially could cause the problem.

It is intended to replace the flashlight() function when more program space is required. If possible, it is more
desirable to use flashlight(), so that the actual flashlight feature isn't lost.

See also

Arduboy2Base::flashlight() boot()

Definition at line 249 of file Arduboy2Core.cpp.

6.1.2.79 void Arduboy2Core::sendLCDCommand (uint8_t command) [static], [inherited]

Send a single command byte to the display.

Generated by Doxygen

58 Class Documentation

Parameters

command The command byte to send to the display.

The display will be set to command mode then the specified command byte will be sent. The display will then be
set to data mode. Multi-byte commands can be sent by calling this function multiple times.

Note

Sending improper commands to the display can place it into invalid or unexpected states, possibly even
causing physical damage.

Definition at line 400 of file Arduboy2Core.cpp.

6.1.2.80 void Arduboy2::setCursor (int16_t x, int16_t y)

Set the location of the text cursor.

Parameters

x The X coordinate, in pixels, for the new location of the text cursor.

y The Y coordinate, in pixels, for the new location of the text cursor.

The location of the text cursor is set the the specified coordinates. The coordinates are in pixels. Since the coor-
dinates can specify any pixel location, the text does not have to be placed on specific rows. As with all drawing
functions, location 0, 0 is the top left corner of the display. The cursor location will be the top left corner of the next
character written.

See also

getCursorX() getCursorY()

Definition at line 1334 of file Arduboy2.cpp.

6.1.2.81 void Arduboy2Base::setFrameDuration (uint8_t duration) [inherited]

Set the frame rate, used by the frame control functions, by giving the duration of each frame.

Parameters

duration The desired duration of each frame in milliseconds.

Set the frame rate by specifying the duration of each frame in milliseconds. This is used by nextFrame() to
update frames at a given rate. If this function or setFrameRate() isn't used, the default will be 16ms per frame.

Normally, the frame rate would be set to the desired value once, at the start of the game, but it can be changed at
any time to alter the frame update rate.

Generated by Doxygen

6.1 Arduboy2 Class Reference 59

See also

nextFrame() setFrameRate()

Definition at line 240 of file Arduboy2.cpp.

6.1.2.82 void Arduboy2Base::setFrameRate (uint8_t rate) [inherited]

Set the frame rate used by the frame control functions.

Parameters

rate The desired frame rate in frames per second.

Set the frame rate, in frames per second, used by nextFrame() to update frames at a given rate. If this function
or setFrameDuration() isn't used, the default rate will be 60 (actually 62.5, see note below).

Normally, the frame rate would be set to the desired value once, at the start of the game, but it can be changed at
any time to alter the frame update rate.

Note

The given rate is internally converted to a frame duration in milliseconds, rounded down to the nearest integer.
Therefore, the actual rate will be equal to or higher than the rate given.
For example, 60 FPS would be 16.67ms per frame. This will be rounded down to 16ms, giving an actual frame
rate of 62.5 FPS.

See also

nextFrame() setFrameDuration()

Definition at line 235 of file Arduboy2.cpp.

6.1.2.83 void Arduboy2Core::setRGBled (uint8_t red, uint8_t green, uint8_t blue) [static], [inherited]

Set the light output of the RGB LED.

Parameters

red,green,blue The brightness value for each LED.

The RGB LED is actually individual red, green and blue LEDs placed very close together in a single package. By
setting the brightness of each LED, the RGB LED can show various colors and intensities. The brightness of each
LED can be set to a value from 0 (fully off) to 255 (fully on).

Note

Certain libraries that take control of the hardware timers may interfere with the ability of this function to properly
control the RGB LED. ArduboyPlaytune is one such library known to do this. The digitalWriteRGB() function
will still work properly in this case.

Generated by Doxygen

60 Class Documentation

Note

Many of the Kickstarter Arduboys were accidentally shipped with the RGB LED installed incorrectly. For these
units, the green LED cannot be lit. As long as the green led is set to off, setting the red LED will actually
control the blue LED and setting the blue LED will actually control the red LED. If the green LED is turned fully
on, none of the LEDs will light.

See also

setRGBled(uint8_t, uint8_t) digitalWriteRGB() freeRGBled()

Definition at line 435 of file Arduboy2Core.cpp.

6.1.2.84 void Arduboy2Core::setRGBled (uint8_t color, uint8_t val) [static], [inherited]

Set the brightness of one of the RGB LEDs without affecting the others.

Parameters

color The name of the LED to set. The value given should be one of RED_LED, GREEN_LED or BLUE_LED.

val The brightness value for the LED, from 0 to 255.

Note

In order to use this function, the 3 parameter version must first be called at least once, in order to initialize the
hardware.

This 2 parameter version of the function will set the brightness of a single LED within the RGB LED without affecting
the current brightness of the other two. See the description of the 3 parameter version of this function for more
details on the RGB LED.

See also

setRGBled(uint8_t, uint8_t, uint8_t) digitalWriteRGB() freeRGBled()

Definition at line 457 of file Arduboy2Core.cpp.

6.1.2.85 void Arduboy2::setTextBackground (uint8_t bg)

Set the text background color.

Parameters

bg The background color to be used for following text.

See also

setTextColor() getTextBackground()

Definition at line 1360 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 61

6.1.2.86 void Arduboy2::setTextColor (uint8_t color)

Set the text foreground color.

Parameters

color The color to be used for following text.

See also

setTextBackground() getTextColor()

Definition at line 1350 of file Arduboy2.cpp.

6.1.2.87 void Arduboy2::setTextSize (uint8_t s)

Set the text character size.

Parameters

s The text size multiplier. Must be 1 or higher.

Setting a text size of 1 will result in standard size characters which occupy 6x8 pixels (the result of 5x7 characters
with spacing on the right and bottom edges).

The value specified is a multiplier. A value of 2 will double the size so they will occupy 12x16 pixels. A value of 3
will result in 18x24, etc.

See also

getTextSize()

Definition at line 1370 of file Arduboy2.cpp.

6.1.2.88 void Arduboy2::setTextWrap (bool w)

Set or disable text wrap mode.

Parameters

w true enables text wrap mode. false disables it.

Text wrap mode is enabled by specifying true. In wrap mode, the text cursor will be moved to the start of the next
line (based on the current text size) if the following character wouldn't fit entirely at the end of the current line.

If wrap mode is disabled, characters will continue to be written to the same line. A character at the right edge of the
screen may only be partially displayed and additional characters will be off screen.

Generated by Doxygen

62 Class Documentation

See also

getTextWrap()

Definition at line 1381 of file Arduboy2.cpp.

6.1.2.89 void Arduboy2Core::SPItransfer (uint8_t data) [static], [inherited]

Transfer a byte to the display.

Parameters

data The byte to be sent to the display.

Transfer one byte to the display over the SPI port and wait for the transfer to complete. The byte will either be
interpreted as a command or as data to be placed on the screen, depending on the command/data mode.

See also

LCDDataMode() LCDCommandMode() sendLCDCommand()

Definition at line 236 of file Arduboy2Core.cpp.

6.1.2.90 void Arduboy2Base::systemButtons () [inherited]

Handle buttons held on startup for system control.

This function is called by begin() and can be called by a sketch after boot().

Hold the B button when booting to enter system control mode. The B button must be held continuously to remain in
this mode. Then, pressing other buttons will perform system control functions:

• UP: Set "sound enabled" in EEPROM

• DOWN: Set "sound disabled" (mute) in EEPROM

See also

begin() boot()

Definition at line 94 of file Arduboy2.cpp.

6.1.2.91 void Arduboy2Base::waitNoButtons () [inherited]

Wait until all buttons have been released.

This function is called by begin() and can be called by a sketch after boot().

It won't return unless no buttons are being pressed. A short delay is performed each time before testing the state of
the buttons to do a simple button debounce.

This function is called at the end of begin() to make sure no buttons used to perform system start up actions are
still being pressed, to prevent them from erroneously being detected by the sketch code itself.

See also

begin() boot()

Definition at line 227 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 63

6.1.2.92 uint8_t Arduboy2Core::width () [static], [inherited]

Get the width of the display in pixels.

Returns

The width of the display in pixels.

Note

In most cases, the defined value WIDTH would be better to use instead of this function.

Definition at line 301 of file Arduboy2Core.cpp.

6.1.2.93 size_t Arduboy2::write (uint8_t c) [virtual]

Write a single ASCII character at the current text cursor location.

Parameters

c The ASCII value of the character to be written.

Returns

The number of characters written (will always be 1).

This is the Arduboy implemetation of the Arduino virtual write() function. The single ASCII character specified
is written to the the screen buffer at the current text cursor. The text cursor is then moved to the next character
position in the screen buffer. This new cursor position will depend on the current text size and possibly the current
wrap mode.

Two special characters are handled:

• The newline character \n. This will move the text cursor to the start of the next line based on the current text
size.

• The carriage return character \r. This character will be ignored.

Note

This function is rather low level and, although it's available as a public function, it wouldn't normally be used.
In most cases the Arduino Print class should be used for writing text.

See also

Print setTextSize() setTextWrap()

Definition at line 1270 of file Arduboy2.cpp.

6.1.2.94 void Arduboy2Base::writeShowBootLogoFlag (bool val) [inherited]

Write the "Show Boot Logo" flag in system EEPROM.

Generated by Doxygen

64 Class Documentation

Parameters

val If true the flag is set to indicate that the boot logo sequence should be displayed. If false the flag is
set to not display the boot logo sequence.

The "Show Boot Logo" flag is used to determine whether the system boot logo sequence is to be displayed when
the system boots up. This function allows the flag to be saved with the desired value.

See also

readShowBootLogoFlag() bootLogo()

Definition at line 1138 of file Arduboy2.cpp.

6.1.2.95 void Arduboy2Base::writeShowBootLogoLEDsFlag (bool val) [inherited]

Write the "Show LEDs with boot logo" flag in system EEPROM.

Parameters

val If true the flag is set to indicate that the RGB LEDs should be flashed. If false the flag is set to leave
the LEDs off.

The "Show LEDs with boot logo" flag is used to determine whether the RGB LEDs should be flashed in sequence
while the boot logo is being displayed. This function allows the flag to be saved with the desired value.

See also

readShowBootLogoLEDsFlag()

Definition at line 1164 of file Arduboy2.cpp.

6.1.2.96 void Arduboy2Base::writeShowUnitNameFlag (bool val) [inherited]

Write the "Show Unit Name" flag in system EEPROM.

Parameters

val If true the flag is set to indicate that the unit name should be displayed. If false the flag is set to not
display the unit name.

The "Show Unit Name" flag is used to determine whether the system unit name is to be displayed at the end of the
boot logo sequence. This function allows the flag to be saved with the desired value.

See also

readShowUnitNameFlag() writeUnitName() readUnitName() Arduboy2::bootLogoExtra()

Definition at line 1151 of file Arduboy2.cpp.

Generated by Doxygen

6.1 Arduboy2 Class Reference 65

6.1.2.97 void Arduboy2Base::writeUnitID (uint16_t id) [inherited]

Write a unit ID to system EEPROM.

Parameters

id The value of the unit ID to be stored in system EEPROM.

This function writes a unit ID to a reserved location in system EEPROM. The ID can be any value. It is intended to
allow different units to be uniquely identified.

See also

readUnitID() writeUnitName()

Definition at line 1091 of file Arduboy2.cpp.

6.1.2.98 void Arduboy2Base::writeUnitName (char ∗ name) [inherited]

Write a unit name to system EEPROM.

Parameters

name A pointer to a string array variable containing the unit name to be saved. The string can be up to 6
characters and must be terminated with a null (0x00) character. It can contain any values except 0xFF.

This function writes a unit name to a reserved area in system EEPROM. The name is in ASCII and can contain any
values except 0xFF and the null (0x00) terminator value. The newline character (LF, \n, 0x0A) and carriage return
character (CR, \r, 0x0D) should also be avoided.

The name can be used for any purpose. It could identify the owner or give the unit itself a nickname. A sketch could
use it to automatically fill in a name or initials in a high score table, or display it as the "player" when the opponent
is the computer.

Note

Sketches can use the defined value ARDUBOY_UNIT_NAME_LEN instead of hard coding a 6 when working
with the unit name.

See also

readUnitName() writeUnitID() Arduboy2::bootLogoExtra()

Definition at line 1117 of file Arduboy2.cpp.

Generated by Doxygen

66 Class Documentation

6.1.3 Member Data Documentation

6.1.3.1 Arduboy2Audio Arduboy2Base::audio [inherited]

An object created to provide audio control functions within this class.

This object is created to eliminate the need for a sketch to create an Arduboy2Audio class object itself.

See also

Arduboy2Audio

Definition at line 218 of file Arduboy2.h.

6.1.3.2 uint16_t Arduboy2Base::frameCount [inherited]

A counter which is incremented once per frame.

This counter is incremented once per frame when using the nextFrame() function. It will wrap to zero when it
reaches its maximum value.

It could be used to have an event occur for a given number of frames, or a given number of frames later, in a way
that wouldn't be quantized the way that using everyXFrames() might.

example:

// move for 10 frames when right button is pressed, if not already moving
if (!moving) {

if (arduboy.justPressed(RIGHT_BUTTON)) {
endMoving = arduboy.frameCount + 10;
moving = true;

}
} else {

movePlayer();
if (arduboy.frameCount == endMoving) {
moving = false;

}
}

This counter could also be used to determine the number of frames that have elapsed between events but the
possibility of the counter wrapping would have to be accounted for.

See also

nextFrame() everyXFrames()

Definition at line 1296 of file Arduboy2.h.

Generated by Doxygen

6.2 Arduboy2Audio Class Reference 67

6.1.3.3 uint8_t Arduboy2Base::sBuffer [static], [inherited]

The display buffer array in RAM.

The display buffer (also known as the screen buffer) contains an image bitmap of the desired contents of the display,
which is written to the display using the display() function. The drawing functions of this library manipulate the
contents of the display buffer. A sketch can also access the display buffer directly.

See also

getBuffer()

Definition at line 1310 of file Arduboy2.h.

The documentation for this class was generated from the following files:

• src/Arduboy2.h
• src/Arduboy2.cpp

6.2 Arduboy2Audio Class Reference

Provide speaker and sound control.

#include <Arduboy2Audio.h>

Collaboration diagram for Arduboy2Audio:

Arduboy2Audio

audio_enabled

+ begin()
+ on()
+ off()
+ toggle()
+ saveOnOff()
+ enabled()

Static Public Member Functions

• static void begin ()

Initialize the speaker based on the current mute setting.
• static void on ()

Turn sound on.
• static void off ()

Turn sound off (mute).
• static void toggle ()

Toggle the sound on/off state.
• static void saveOnOff ()

Save the current sound state in EEPROM.
• static bool enabled ()

Get the current sound state.

Generated by Doxygen

68 Class Documentation

6.2.1 Detailed Description

Provide speaker and sound control.

This class provides functions to initialize the speaker and control the enabling and disabling (muting) of sound. It
doesn't provide any functions to actually produce sound.

The state of sound muting is stored in system EEPROM and so is retained over power cycles.

An Arduboy2Audio class object named audio will be created by the Arduboy2Base class, so there is no need for
a sketch itself to create an Arduboy2Audio object. Arduboy2Audio functions can be called using the Arduboy2 or
Arduboy2Base audio object.

Example:

#include <Arduboy2.h>

Arduboy2 arduboy;

// Arduboy2Audio functions can be called as follows:
arduboy.audio.on();
arduboy.audio.off();

Note

In order for this class to be fully functional, the external library or functions used by a sketch to actually to
produce sounds should be compliant with this class. This means they should only produce sound if it is
enabled, or mute the sound if it's disabled. The enabled() function can be used to determine if sound is
enabled or muted. Generally a compliant library would accept the enabled() function as an initialization
parameter and then call it as necessary to determine the current state.
For example, the ArduboyTones and ArduboyPlaytune libraries require an enabled() type function to be
passed as a parameter in the constructor, like so:

#include <Arduboy2.h>
#include <ArduboyTones.h>

Arduboy2 arduboy;
ArduboyTones sound(arduboy.audio.enabled);

Note

A friend class named Arduboy2Ex is declared by this class. The intention is to allow a sketch to create an
Arduboy2Ex class which would have access to the private and protected members of the Arduboy2Audio
class. It is hoped that this may eliminate the need to create an entire local copy of the library, in order to
extend the functionality, in most circumstances.

Definition at line 73 of file Arduboy2Audio.h.

6.2.2 Member Function Documentation

6.2.2.1 void Arduboy2Audio::begin () [static]

Initialize the speaker based on the current mute setting.

The speaker is initialized based on the current mute setting saved in system EEPROM. This function is called by
Arduboy2Base::begin() so it isn't normally required to call it within a sketch. However, if Arduboy2Core←↩

::boot() is used instead of Arduboy2Base::begin() and the sketch includes sound, then this function
should be called after boot().

Definition at line 49 of file Arduboy2Audio.cpp.

Generated by Doxygen

6.2 Arduboy2Audio Class Reference 69

6.2.2.2 bool Arduboy2Audio::enabled () [static]

Get the current sound state.

Returns

true if sound is currently enabled (not muted).

This function should be used by code that actually generates sound. If true is returned, sound can be produced.
If false is returned, sound should be muted.

See also

on() off() toggle()

Definition at line 57 of file Arduboy2Audio.cpp.

6.2.2.3 void Arduboy2Audio::off () [static]

Turn sound off (mute).

The system is configured to not produce sound (mute). This function sets the sound mode only until the unit is
powered off. To save the current mode use saveOnOff().

See also

on() toggle() saveOnOff()

Definition at line 24 of file Arduboy2Audio.cpp.

6.2.2.4 void Arduboy2Audio::on () [static]

Turn sound on.

The system is configured to generate sound. This function sets the sound mode only until the unit is powered off.
To save the current mode use saveOnOff().

See also

off() toggle() saveOnOff()

Definition at line 12 of file Arduboy2Audio.cpp.

Generated by Doxygen

70 Class Documentation

6.2.2.5 void Arduboy2Audio::saveOnOff () [static]

Save the current sound state in EEPROM.

The current sound state, set by on() or off(), is saved to the reserved system area in EEPROM. This allows
the state to carry over between power cycles and after uploading a different sketch.

Note

EEPROM is limited in the number of times it can be written to. Sketches should not continuously change and
then save the state rapidly.

See also

on() off() toggle()

Definition at line 44 of file Arduboy2Audio.cpp.

6.2.2.6 void Arduboy2Audio::toggle () [static]

Toggle the sound on/off state.

If the system is configured for sound on, it will be changed to sound off (mute). If sound is off, it will be changed to on.
This function sets the sound mode only until the unit is powered off. To save the current mode use saveOnOff().

See also

on() off() saveOnOff()

Definition at line 36 of file Arduboy2Audio.cpp.

The documentation for this class was generated from the following files:

• src/Arduboy2Audio.h

• src/Arduboy2Audio.cpp

6.3 Arduboy2Base Class Reference

The main functions provided for writing sketches for the Arduboy, minus text output.

#include <Arduboy2.h>

Generated by Doxygen

6.3 Arduboy2Base Class Reference 71

Inheritance diagram for Arduboy2Base:

Arduboy2Base

+ audio
+ frameCount
+ sBuffer
currentButtonState
previousButtonState
eachFrameMillis
thisFrameStart
justRendered
lastFrameDurationMs

+ Arduboy2Base()
+ begin()
+ flashlight()
+ systemButtons()
+ bootLogo()
+ bootLogoCompressed()
+ bootLogoSpritesSelfMasked()
+ bootLogoSpritesOverwrite()
+ bootLogoSpritesBSelfMasked()
+ bootLogoSpritesBOverwrite()
and 47 more...
+ drawPixel()
+ drawBitmap()
+ drawCompressed()
+ collide()
+ collide()
sysCtrlSound()
drawLogoBitmap()
drawLogoCompressed()
drawLogoSpritesSelfMasked()
drawLogoSpritesOverwrite()
drawLogoSpritesBSelfMasked()
drawLogoSpritesBOverwrite()

Arduboy2

cursor_x
cursor_y
textColor
textBackground
textSize
textWrap

+ Arduboy2()
+ bootLogoText()
+ bootLogoExtra()
+ write()
+ drawChar()
+ setCursor()
+ getCursorX()
+ getCursorY()
+ setTextColor()
+ getTextColor()
and 7 more...

Arduboy2Core

+ Arduboy2Core()
+ idle()
+ LCDDataMode()
+ LCDCommandMode()
+ SPItransfer()
+ displayOff()
+ displayOn()
+ width()
+ height()
+ buttonsState()
+ paint8Pixels()
and 18 more...
setCPUSpeed8MHz()
bootSPI()
bootOLED()
bootPins()
bootPowerSaving()

Generated by Doxygen

72 Class Documentation

Collaboration diagram for Arduboy2Base:

Arduboy2Base

+ frameCount
+ sBuffer
currentButtonState
previousButtonState
eachFrameMillis
thisFrameStart
justRendered
lastFrameDurationMs

+ Arduboy2Base()
+ begin()
+ flashlight()
+ systemButtons()
+ bootLogo()
+ bootLogoCompressed()
+ bootLogoSpritesSelfMasked()
+ bootLogoSpritesOverwrite()
+ bootLogoSpritesBSelfMasked()
+ bootLogoSpritesBOverwrite()
and 47 more...
+ drawPixel()
+ drawBitmap()
+ drawCompressed()
+ collide()
+ collide()
sysCtrlSound()
drawLogoBitmap()
drawLogoCompressed()
drawLogoSpritesSelfMasked()
drawLogoSpritesOverwrite()
drawLogoSpritesBSelfMasked()
drawLogoSpritesBOverwrite()

Arduboy2Core

+ Arduboy2Core()
+ idle()
+ LCDDataMode()
+ LCDCommandMode()
+ SPItransfer()
+ displayOff()
+ displayOn()
+ width()
+ height()
+ buttonsState()
+ paint8Pixels()
and 18 more...
setCPUSpeed8MHz()
bootSPI()
bootOLED()
bootPins()
bootPowerSaving()

Arduboy2Audio

audio_enabled

+ begin()
+ on()
+ off()
+ toggle()
+ saveOnOff()
+ enabled()

 +audio

Public Member Functions

• void begin ()

Initialize the hardware, display the boot logo, provide boot utilities, etc.

• void flashlight ()

Turn the RGB LED and display fully on to act as a small flashlight/torch.

• void systemButtons ()

Generated by Doxygen

6.3 Arduboy2Base Class Reference 73

Handle buttons held on startup for system control.

• void bootLogo ()

Display the boot logo sequence using drawBitmap().

• void bootLogoCompressed ()

Display the boot logo sequence using drawCompressed().

• void bootLogoSpritesSelfMasked ()

Display the boot logo sequence using Sprites::drawSelfMasked().

• void bootLogoSpritesOverwrite ()

Display the boot logo sequence using Sprites::drawOverwrite().

• void bootLogoSpritesBSelfMasked ()

Display the boot logo sequence using SpritesB::drawSelfMasked().

• void bootLogoSpritesBOverwrite ()

Display the boot logo sequence using SpritesB::drawOverwrite().

• void bootLogoShell (void(∗drawLogo)(int16_t))

Display the boot logo sequence using the provided function.

• void waitNoButtons ()

Wait until all buttons have been released.

• void clear ()

Clear the display buffer.

• void display ()

Copy the contents of the display buffer to the display.

• void display (bool clear)

Copy the contents of the display buffer to the display. The display buffer can optionally be cleared.

• uint8_t getPixel (uint8_t x, uint8_t y)

Returns the state of the given pixel in the screen buffer.

• void drawCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE)

Draw a circle of a given radius.

• void fillCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color=WHITE)

Draw a filled-in circle of a given radius.

• void drawLine (int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color=WHITE)

Draw a line between two specified points.

• void drawRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a rectangle of a specified width and height.

• void drawFastVLine (int16_t x, int16_t y, uint8_t h, uint8_t color=WHITE)

Draw a vertical line.

• void drawFastHLine (int16_t x, int16_t y, uint8_t w, uint8_t color=WHITE)

Draw a horizontal line.

• void fillRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a filled-in rectangle of a specified width and height.

• void fillScreen (uint8_t color=WHITE)

Fill the screen buffer with the specified color.

• void drawRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=WHITE)

Draw a rectangle with rounded corners.

• void fillRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color=WHITE)

Draw a filled-in rectangle with rounded corners.

• void drawTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color=WHITE)

Draw a triangle given the coordinates of each corner.

• void fillTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color=WHITE)

Draw a filled-in triangle given the coordinates of each corner.

• void drawSlowXYBitmap (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a bitmap from a horizontally oriented array in program memory.

Generated by Doxygen

74 Class Documentation

• uint8_t ∗ getBuffer ()

Get a pointer to the display buffer in RAM.

• unsigned long generateRandomSeed ()

Create a seed suitable for use with a random number generator.

• void initRandomSeed ()

Seed the random number generator with a random value.

• void setFrameRate (uint8_t rate)

Set the frame rate used by the frame control functions.

• void setFrameDuration (uint8_t duration)

Set the frame rate, used by the frame control functions, by giving the duration of each frame.

• bool nextFrame ()

Indicate that it's time to render the next frame.

• bool nextFrameDEV ()

Indicate that it's time to render the next frame, and visually indicate if the code is running slower than the desired
frame rate. FOR USE DURING DEVELOPMENT

• bool everyXFrames (uint8_t frames)

Indicate if the specified number of frames has elapsed.

• int cpuLoad ()

Return the load on the CPU as a percentage.

• bool pressed (uint8_t buttons)

Test if the specified buttons are pressed.

• bool notPressed (uint8_t buttons)

Test if the specified buttons are not pressed.

• void pollButtons ()

Poll the buttons and track their state over time.

• bool justPressed (uint8_t button)

Check if a button has just been pressed.

• bool justReleased (uint8_t button)

Check if a button has just been released.

• uint16_t readUnitID ()

Read the unit ID from system EEPROM.

• void writeUnitID (uint16_t id)

Write a unit ID to system EEPROM.

• uint8_t readUnitName (char ∗name)

Read the unit name from system EEPROM.

• void writeUnitName (char ∗name)

Write a unit name to system EEPROM.

• bool readShowBootLogoFlag ()

Read the "Show Boot Logo" flag in system EEPROM.

• void writeShowBootLogoFlag (bool val)

Write the "Show Boot Logo" flag in system EEPROM.

• bool readShowUnitNameFlag ()

Read the "Show Unit Name" flag in system EEPROM.

• void writeShowUnitNameFlag (bool val)

Write the "Show Unit Name" flag in system EEPROM.

• bool readShowBootLogoLEDsFlag ()

Read the "Show LEDs with boot logo" flag in system EEPROM.

• void writeShowBootLogoLEDsFlag (bool val)

Write the "Show LEDs with boot logo" flag in system EEPROM.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 75

Static Public Member Functions

• static void drawPixel (int16_t x, int16_t y, uint8_t color=WHITE)

Set a single pixel in the display buffer to the specified color.

• static void drawBitmap (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t w, uint8_t h, uint8_t color=WHITE)

Draw a bitmap from an array in program memory.

• static void drawCompressed (int16_t sx, int16_t sy, const uint8_t ∗bitmap, uint8_t color=WHITE)

Draw a bitmap from an array of compressed data.

• static bool collide (Point point, Rect rect)

Test if a point falls within a rectangle.

• static bool collide (Rect rect1, Rect rect2)

Test if a rectangle is intersecting with another rectangle.

• static void idle ()

Idle the CPU to save power.

• static void LCDDataMode ()

Put the display into data mode.

• static void LCDCommandMode ()

Put the display into command mode.

• static void SPItransfer (uint8_t data)

Transfer a byte to the display.

• static void displayOff ()

Turn the display off.

• static void displayOn ()

Turn the display on.

• static uint8_t width ()

Get the width of the display in pixels.

• static uint8_t height ()

Get the height of the display in pixels.

• static uint8_t buttonsState ()

Get the current state of all buttons as a bitmask.

• static void paint8Pixels (uint8_t pixels)

Paint 8 pixels vertically to the display.

• static void paintScreen (const uint8_t ∗image)

Paints an entire image directly to the display from program memory.

• static void paintScreen (uint8_t image[], bool clear=false)

Paints an entire image directly to the display from an array in RAM.

• static void blank ()

Blank the display screen by setting all pixels off.

• static void invert (bool inverse)

Invert the entire display or set it back to normal.

• static void allPixelsOn (bool on)

Turn all display pixels on or display the buffer contents.

• static void flipVertical (bool flipped)

Flip the display vertically or set it back to normal.

• static void flipHorizontal (bool flipped)

Flip the display horizontally or set it back to normal.

• static void sendLCDCommand (uint8_t command)

Send a single command byte to the display.

• static void setRGBled (uint8_t red, uint8_t green, uint8_t blue)

Set the light output of the RGB LED.

• static void setRGBled (uint8_t color, uint8_t val)

Generated by Doxygen

76 Class Documentation

Set the brightness of one of the RGB LEDs without affecting the others.
• static void freeRGBled ()

Relinquish analog control of the RGB LED.
• static void digitalWriteRGB (uint8_t red, uint8_t green, uint8_t blue)

Set the RGB LEDs digitally, to either fully on or fully off.
• static void digitalWriteRGB (uint8_t color, uint8_t val)

Set one of the RGB LEDs digitally, to either fully on or fully off.
• static void boot ()

Initialize the Arduboy's hardware.
• static void safeMode ()

Allow upload when the bootloader "magic number" could be corrupted.
• static void delayShort (uint16_t ms) __attribute__((noinline))

Delay for the number of milliseconds, specified as a 16 bit value.
• static void exitToBootloader ()

Exit the sketch and start the bootloader.

Public Attributes
• Arduboy2Audio audio

An object created to provide audio control functions within this class.
• uint16_t frameCount

A counter which is incremented once per frame.

Static Public Attributes
• static uint8_t sBuffer [(HEIGHT ∗WIDTH)/8]

The display buffer array in RAM.

6.3.1 Detailed Description

The main functions provided for writing sketches for the Arduboy, minus text output.

This class in inherited by Arduboy2, so if text output functions are required Arduboy2 should be used instead.

Note

An Arduboy2Audio class object named audio will be created by the Arduboy2Base class, so there is no
need for a sketch itself to create an Arduboy2Audio object. Arduboy2Audio functions can be called using the
Arduboy2 or Arduboy2Base audio object.
Example:
#include <Arduboy2.h>

Arduboy2 arduboy;

// Arduboy2Audio functions can be called as follows:
arduboy.audio.on();
arduboy.audio.off();

Note

A friend class named Arduboy2Ex is declared by this class. The intention is to allow a sketch to create an
Arduboy2Ex class which would have access to the private and protected members of the Arduboy2Base class.
It is hoped that this may eliminate the need to create an entire local copy of the library, in order to extend the
functionality, in most circumstances.

See also

Arduboy2

Definition at line 202 of file Arduboy2.h.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 77

6.3.2 Member Function Documentation

6.3.2.1 void Arduboy2Core::allPixelsOn (bool on) [static], [inherited]

Turn all display pixels on or display the buffer contents.

Parameters

on true turns all pixels on. false displays the contents of the hardware display buffer.

Calling this function with a value of true will override the contents of the hardware display buffer and turn all pixels
on. The contents of the hardware buffer will remain unchanged.

Calling this function with a value of false will set the normal state of displaying the contents of the hardware
display buffer.

Note

All pixels will be lit even if the display is in inverted mode.

See also

invert()

Definition at line 416 of file Arduboy2Core.cpp.

6.3.2.2 void Arduboy2Base::begin ()

Initialize the hardware, display the boot logo, provide boot utilities, etc.

This function should be called once near the start of the sketch, usually in setup(), before using any other
functions in this class. It initializes the display, displays the boot logo, provides "flashlight" and system control
features and initializes audio control.

Note

To free up some code space for use by the sketch, boot() can be used instead of begin() to allow the
elimination of some of the things that aren't really required, such as displaying the boot logo.

See also

boot()

Definition at line 48 of file Arduboy2.cpp.

6.3.2.3 void Arduboy2Core::blank () [static], [inherited]

Blank the display screen by setting all pixels off.

All pixels on the screen will be written with a value of 0 to turn them off.

Definition at line 394 of file Arduboy2Core.cpp.

Generated by Doxygen

78 Class Documentation

6.3.2.4 void Arduboy2Core::boot () [static], [inherited]

Initialize the Arduboy's hardware.

This function initializes the display, buttons, etc.

This function is called by begin() so isn't normally called within a sketch. However, in order to free up some code
space, by eliminating some of the start up features, it can be called in place of begin(). The functions that begin()
would call after boot() can then be called to add back in some of the start up features, if desired. See the README
file or documentation on the main page for more details.

See also

Arduboy2Base::begin()

Definition at line 78 of file Arduboy2Core.cpp.

6.3.2.5 void Arduboy2Base::bootLogo ()

Display the boot logo sequence using drawBitmap().

This function is called by begin() and can be called by a sketch after boot().

The Arduboy logo scrolls down from the top of the screen to the center while the RGB LEDs light in sequence.

The bootLogoShell() helper function is used to perform the actual sequence. The documentation for boot←↩

LogoShell() provides details on how it operates.

See also

begin() boot() bootLogoShell() Arduboy2::bootLogoText()

Definition at line 120 of file Arduboy2.cpp.

6.3.2.6 void Arduboy2Base::bootLogoCompressed ()

Display the boot logo sequence using drawCompressed().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses drawCompressed().

See also

bootLogo() begin() boot()

Definition at line 130 of file Arduboy2.cpp.

6.3.2.7 void Arduboy2Base::bootLogoShell (void(∗)(int16_t) drawLogo)

Display the boot logo sequence using the provided function.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 79

Parameters

drawLogo A reference to a function which will draw the boot logo at the given Y position.

This common function executes the sequence to display the boot logo. It is called by bootLogo() and other
similar functions which provide it with a reference to a function which will do the actual drawing of the logo.

This function calls bootLogoExtra() after the logo stops scrolling down, which derived classes can implement
to add additional information to the logo screen. The Arduboy2 class uses this to display the unit name.

If the RIGHT button is pressed while the logo is scrolling down, the boot logo sequence will be aborted. This can
be useful for developers who wish to quickly start testing, or anyone else who is impatient and wants to go straight
to the actual sketch.

If the SYS_FLAG_SHOW_LOGO_LEDS flag in system EEPROM is cleared, the RGB LEDs will not be flashed
during the logo display sequence.

If the SYS_FLAG_SHOW_LOGO flag in system EEPROM is cleared, this function will return without executing the
logo display sequence.

The prototype for the function provided to draw the logo is:

void drawLogo(int16_t y);

The y parameter is the Y offset for the top of the logo. It is expected that the logo will be 16 pixels high and centered
horizontally. This will result in the logo stopping in the middle of the screen at the end of the sequence. If the logo
height is not 16 pixels, the Y value can be adjusted to compensate.

See also

bootLogo() boot() Arduboy2::bootLogoExtra()

Definition at line 182 of file Arduboy2.cpp.

6.3.2.8 void Arduboy2Base::bootLogoSpritesBOverwrite ()

Display the boot logo sequence using SpritesB::drawOverwrite().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses SpritesB class functions.

See also

bootLogo() begin() boot() SpritesB

Definition at line 170 of file Arduboy2.cpp.

Generated by Doxygen

80 Class Documentation

6.3.2.9 void Arduboy2Base::bootLogoSpritesBSelfMasked ()

Display the boot logo sequence using SpritesB::drawSelfMasked().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses SpritesB class functions.

See also

bootLogo() begin() boot() SpritesB

Definition at line 160 of file Arduboy2.cpp.

6.3.2.10 void Arduboy2Base::bootLogoSpritesOverwrite ()

Display the boot logo sequence using Sprites::drawOverwrite().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses Sprites class functions.

See also

bootLogo() begin() boot() Sprites

Definition at line 150 of file Arduboy2.cpp.

6.3.2.11 void Arduboy2Base::bootLogoSpritesSelfMasked ()

Display the boot logo sequence using Sprites::drawSelfMasked().

This function can be called by a sketch after boot() as an alternative to bootLogo(). This may reduce code
size if the sketch itself uses Sprites class functions.

See also

bootLogo() begin() boot() Sprites

Definition at line 140 of file Arduboy2.cpp.

6.3.2.12 uint8_t Arduboy2Core::buttonsState () [static], [inherited]

Get the current state of all buttons as a bitmask.

Returns

A bitmask of the state of all the buttons.

The returned mask contains a bit for each button. For any pressed button, its bit will be 1. For released buttons their
associated bits will be 0.

The following defined mask values should be used for the buttons:

LEFT_BUTTON, RIGHT_BUTTON, UP_BUTTON, DOWN_BUTTON, A_BUTTON, B_BUTTON

Definition at line 530 of file Arduboy2Core.cpp.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 81

6.3.2.13 void Arduboy2Base::clear ()

Clear the display buffer.

The entire contents of the screen buffer are cleared to BLACK.

See also

display(bool)

Definition at line 320 of file Arduboy2.cpp.

6.3.2.14 bool Arduboy2Base::collide (Point point, Rect rect) [static]

Test if a point falls within a rectangle.

Parameters

point A structure describing the location of the point.

rect A structure describing the location and size of the rectangle.

Returns

true if the specified point is within the specified rectangle.

This function is intended to detemine if an object, whose boundaries are are defined by the given rectangle, is in
contact with the given point.

See also

Point Rect

Definition at line 1071 of file Arduboy2.cpp.

6.3.2.15 bool Arduboy2Base::collide (Rect rect1, Rect rect2) [static]

Test if a rectangle is intersecting with another rectangle.

Parameters

rect1,rect2 Structures describing the size and locations of the rectangles.

Returns

true if the first rectangle is intersecting the second.

This function is intended to detemine if an object, whose boundaries are are defined by the given rectangle, is in
contact with another rectangular object.

Generated by Doxygen

82 Class Documentation

See also

Rect

Definition at line 1077 of file Arduboy2.cpp.

6.3.2.16 int Arduboy2Base::cpuLoad ()

Return the load on the CPU as a percentage.

Returns

The load on the CPU as a percentage of the total frame time.

The returned value gives the time spent processing a frame as a percentage the total time allotted for a frame, as
determined by the frame rate.

This function normally wouldn't be used in the final program. It is intended for use during program development as
an aid in helping with frame timing.

Note

The percentage returned can be higher than 100 if more time is spent processing a frame than the time allotted
per frame. This would indicate that the frame rate should be made slower or the frame processing code should
be optimized to run faster.

See also

setFrameRate() nextFrame()

Definition at line 291 of file Arduboy2.cpp.

6.3.2.17 void Arduboy2Core::delayShort (uint16_t ms) [static], [inherited]

Delay for the number of milliseconds, specified as a 16 bit value.

Parameters

ms The delay in milliseconds.

This function works the same as the Arduino delay() function except the provided value is 16 bits long, so
the maximum delay allowed is 65535 milliseconds (about 65.5 seconds). Using this function instead of Arduino
delay() will save a few bytes of code.

Definition at line 559 of file Arduboy2Core.cpp.

6.3.2.18 void Arduboy2Core::digitalWriteRGB (uint8_t red, uint8_t green, uint8_t blue) [static], [inherited]

Set the RGB LEDs digitally, to either fully on or fully off.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 83

Parameters

red,green,blue Use value RGB_ON or RGB_OFF to set each LED.

The RGB LED is actually individual red, green and blue LEDs placed very close together in a single package. This
3 parameter version of the function will set each LED either on or off, to set the RGB LED to 7 different colors at
their highest brightness or turn it off.

The colors are as follows:

RED LED GREEN_LED BLUE_LED COLOR
------- --------- -------- -----
RGB_OFF RGB_OFF RGB_OFF OFF
RGB_OFF RGB_OFF RGB_ON Blue
RGB_OFF RGB_ON RGB_OFF Green
RGB_OFF RGB_ON RGB_ON Cyan
RGB_ON RGB_OFF RGB_OFF Red
RGB_ON RGB_OFF RGB_ON Magenta
RGB_ON RGB_ON RGB_OFF Yellow
RGB_ON RGB_ON RGB_ON White

Note

Using the RGB LED in analog mode will prevent digital control of the LED. To restore the ability to control the
LED digitally, use the freeRGBled() function.

Note

Many of the Kickstarter Arduboys were accidentally shipped with the RGB LED installed incorrectly. For these
units, the green LED cannot be lit. As long as the green led is set to off, turning on the red LED will actually
light the blue LED and turning on the blue LED will actually light the red LED. If the green LED is turned on,
none of the LEDs will light.

See also

digitalWriteRGB(uint8_t, uint8_t) setRGBled() freeRGBled()

Definition at line 490 of file Arduboy2Core.cpp.

6.3.2.19 void Arduboy2Core::digitalWriteRGB (uint8_t color, uint8_t val) [static], [inherited]

Set one of the RGB LEDs digitally, to either fully on or fully off.

Parameters

color The name of the LED to set. The value given should be one of RED_LED, GREEN_LED or BLUE_LED.

val Indicates whether to turn the specified LED on or off. The value given should be RGB_ON or RGB_OFF.

This 2 parameter version of the function will set a single LED within the RGB LED either fully on or fully off. See the
description of the 3 parameter version of this function for more details on the RGB LED.

Generated by Doxygen

84 Class Documentation

See also

digitalWriteRGB(uint8_t, uint8_t, uint8_t) setRGBled() freeRGBled()

Definition at line 504 of file Arduboy2Core.cpp.

6.3.2.20 void Arduboy2Base::display ()

Copy the contents of the display buffer to the display.

The contents of the display buffer in RAM are copied to the display and will appear on the screen.

See also

display(bool)

Definition at line 1030 of file Arduboy2.cpp.

6.3.2.21 void Arduboy2Base::display (bool clear)

Copy the contents of the display buffer to the display. The display buffer can optionally be cleared.

Parameters

clear If true the display buffer will be cleared to zero. The defined value CLEAR_BUFFER should be used
instead of true to make it more meaningful.

Operation is the same as calling display() without parameters except additionally the display buffer will be
cleared if the parameter evaluates to true. (The defined value CLEAR_BUFFER can be used for this)

Using display(CLEAR_BUFFER) is faster and produces less code than calling display() followed by
clear().

See also

display() clear()

Definition at line 1035 of file Arduboy2.cpp.

6.3.2.22 void Arduboy2Core::displayOff () [static], [inherited]

Turn the display off.

The display will clear and be put into a low power mode. This can be used to extend battery life when a game is
paused or when a sketch doesn't require anything to be displayed for a relatively long period of time.

See also

displayOn()

Definition at line 285 of file Arduboy2Core.cpp.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 85

6.3.2.23 void Arduboy2Core::displayOn () [static], [inherited]

Turn the display on.

Used to power up and reinitialize the display after calling displayOff().

Note

The previous call to displayOff() will have caused the display's buffer contents to be lost. The display
will have to be re-painted, which is usually done by calling display().

See also

displayOff()

Definition at line 296 of file Arduboy2Core.cpp.

6.3.2.24 void Arduboy2Base::drawBitmap (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t w, uint8_t h, uint8_t color =
WHITE) [static]

Draw a bitmap from an array in program memory.

Parameters

x The X coordinate of the top left pixel affected by the bitmap.

y The Y coordinate of the top left pixel affected by the bitmap.

bitmap A pointer to the bitmap array in program memory.

w The width of the bitmap in pixels.

h The height of the bitmap in pixels.

color The color of pixels for bits set to 1 in the bitmap. If the value is INVERT, bits set to 1 will invert the
corresponding pixel. (optional; defaults to WHITE).

Bits set to 1 in the provided bitmap array will have their corresponding pixel set to the specified color. For bits set to
0 in the array, the corresponding pixel will be left unchanged.

Each byte in the array specifies a vertical column of 8 pixels, with the least significant bit at the top.

The array must be located in program memory by using the PROGMEM modifier.

Definition at line 838 of file Arduboy2.cpp.

6.3.2.25 void Arduboy2Base::drawCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color = WHITE)

Draw a circle of a given radius.

Parameters

x0 The X coordinate of the circle's center.
y0 The Y coordinate of the circle's center.

r The radius of the circle in pixels.

color The circle's color (optional; defaults to WHITE).Generated by Doxygen

86 Class Documentation

Definition at line 396 of file Arduboy2.cpp.

6.3.2.26 void Arduboy2Base::drawCompressed (int16_t sx, int16_t sy, const uint8_t ∗ bitmap, uint8_t color = WHITE)
[static]

Draw a bitmap from an array of compressed data.

Parameters

sx The X coordinate of the top left pixel affected by the bitmap.

sy The Y coordinate of the top left pixel affected by the bitmap.

bitmap A pointer to the compressed bitmap array in program memory.

color The color of pixels for bits set to 1 in the bitmap. (optional; defaults to WHITE).

Draw a bitmap starting at the given coordinates from an array that has been compressed using an algorthm imple-
mented by Team A.R.G. For more information see: https://github.com/TEAMarg/drawCompressed
https://github.com/TEAMarg/Cabi

Bits set to 1 in the provided bitmap array will have their corresponding pixel set to the specified color. For bits set to
0 in the array, the corresponding pixel will be left unchanged.

The array must be located in program memory by using the PROGMEM modifier.

Definition at line 935 of file Arduboy2.cpp.

6.3.2.27 void Arduboy2Base::drawFastHLine (int16_t x, int16_t y, uint8_t w, uint8_t color = WHITE)

Draw a horizontal line.

Parameters

x The X coordinate of the left start point.

y The Y coordinate of the left start point.

w The width of the line.
color The color of the line (optional; defaults to WHITE).

Definition at line 592 of file Arduboy2.cpp.

6.3.2.28 void Arduboy2Base::drawFastVLine (int16_t x, int16_t y, uint8_t h, uint8_t color = WHITE)

Draw a vertical line.

Parameters

x The X coordinate of the upper start point.

y The Y coordinate of the upper start point.

h The height of the line.

color The color of the line (optional; defaults to WHITE).

Generated by Doxygen

https://github.com/TEAMarg/drawCompressed
https://github.com/TEAMarg/Cabi

6.3 Arduboy2Base Class Reference 87

Definition at line 582 of file Arduboy2.cpp.

6.3.2.29 void Arduboy2Base::drawLine (int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color = WHITE)

Draw a line between two specified points.

Parameters

x0,x1 The X coordinates of the line ends.

y0,y1 The Y coordinates of the line ends.

color The line's color (optional; defaults to WHITE).

Draw a line from the start point to the end point using Bresenham's algorithm. The start and end points can be at
any location with respect to the other.

Definition at line 522 of file Arduboy2.cpp.

6.3.2.30 void Arduboy2Base::drawPixel (int16_t x, int16_t y, uint8_t color = WHITE) [static]

Set a single pixel in the display buffer to the specified color.

Parameters

x The X coordinate of the pixel.

y The Y coordinate of the pixel.

color The color of the pixel (optional; defaults to WHITE).

The single pixel specified location in the display buffer is set to the specified color. The values WHITE or BLACK
can be used for the color. If the color parameter isn't included, the pixel will be set to WHITE.

Definition at line 325 of file Arduboy2.cpp.

6.3.2.31 void Arduboy2Base::drawRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color = WHITE)

Draw a rectangle of a specified width and height.

Parameters

x The X coordinate of the upper left corner.

y The Y coordinate of the upper left corner.

w The width of the rectangle.

h The height of the rectangle.

color The color of the pixel (optional; defaults to WHITE).

Definition at line 573 of file Arduboy2.cpp.

Generated by Doxygen

88 Class Documentation

6.3.2.32 void Arduboy2Base::drawRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color = WHITE)

Draw a rectangle with rounded corners.

Parameters

x The X coordinate of the left edge.

y The Y coordinate of the top edge.

w The width of the rectangle.

h The height of the rectangle.

r The radius of the semicircles forming the corners.

color The color of the rectangle (optional; defaults to WHITE).

Definition at line 701 of file Arduboy2.cpp.

6.3.2.33 void Arduboy2Base::drawSlowXYBitmap (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t w, uint8_t h, uint8_t
color = WHITE)

Draw a bitmap from a horizontally oriented array in program memory.

Parameters

x The X coordinate of the top left pixel affected by the bitmap.

y The Y coordinate of the top left pixel affected by the bitmap.

bitmap A pointer to the bitmap array in program memory.

w The width of the bitmap in pixels.

h The height of the bitmap in pixels.

color The color of pixels for bits set to 1 in the bitmap. (optional; defaults to WHITE).

Bits set to 1 in the provided bitmap array will have their corresponding pixel set to the specified color. For bits set to
0 in the array, the corresponding pixel will be left unchanged.

Each byte in the array specifies a horizontal row of 8 pixels, with the most significant bit at the left end of the row.

The array must be located in program memory by using the PROGMEM modifier.

Note

This function requires a lot of additional CPU power and will draw images slower than drawBitmap(),
which uses bitmaps that are stored in a format that allows them to be directly written to the screen. It is
recommended you use drawBitmap() when possible.

Definition at line 884 of file Arduboy2.cpp.

6.3.2.34 void Arduboy2Base::drawTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color =
WHITE)

Draw a triangle given the coordinates of each corner.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 89

Parameters

x0,x1,x2 The X coordinates of the corners.

y0,y1,y2 The Y coordinates of the corners.

color The triangle's color (optional; defaults to WHITE).

A triangle is drawn by specifying each of the three corner locations. The corners can be at any position with respect
to the others.

Definition at line 727 of file Arduboy2.cpp.

6.3.2.35 bool Arduboy2Base::everyXFrames (uint8_t frames)

Indicate if the specified number of frames has elapsed.

Parameters

frames The desired number of elapsed frames.

Returns

true if the specified number of frames has elapsed.

This function should be called with the same value each time for a given event. It will return true if the given
number of frames has elapsed since the previous frame in which it returned true.

For example, if you wanted to fire a shot every 5 frames while the A button is being held down:

if (arduboy.everyXFrames(5)) {
if arduboy.pressed(A_BUTTON) {
fireShot();

}
}

See also

setFrameRate() nextFrame()

Definition at line 245 of file Arduboy2.cpp.

6.3.2.36 void Arduboy2Core::exitToBootloader () [static], [inherited]

Exit the sketch and start the bootloader.

The sketch will exit and the bootloader will be started in command mode. The effect will be similar to pressing the
reset button.

This function is intended to be used to allow uploading a new sketch, when the USB code has been removed to
gain more code space. Ideally, the sketch would present a "New Sketch Upload" menu or prompt telling the user
to "Press and hold the DOWN button when the procedure to upload a new sketch has been initiated". The sketch
would then wait for the DOWN button to be pressed and then call this function.

See also

ARDUBOY_NO_USB

Definition at line 564 of file Arduboy2Core.cpp.

Generated by Doxygen

90 Class Documentation

6.3.2.37 void Arduboy2Base::fillCircle (int16_t x0, int16_t y0, uint8_t r, uint8_t color = WHITE)

Draw a filled-in circle of a given radius.

Parameters

x0 The X coordinate of the circle's center.
y0 The Y coordinate of the circle's center.

r The radius of the circle in pixels.

color The circle's color (optional; defaults to WHITE).

Definition at line 478 of file Arduboy2.cpp.

6.3.2.38 void Arduboy2Base::fillRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t color = WHITE)

Draw a filled-in rectangle of a specified width and height.

Parameters

x The X coordinate of the upper left corner.

y The Y coordinate of the upper left corner.

w The width of the rectangle.

h The height of the rectangle.

color The color of the pixel (optional; defaults to WHITE).

Definition at line 643 of file Arduboy2.cpp.

6.3.2.39 void Arduboy2Base::fillRoundRect (int16_t x, int16_t y, uint8_t w, uint8_t h, uint8_t r, uint8_t color = WHITE)

Draw a filled-in rectangle with rounded corners.

Parameters

x The X coordinate of the left edge.

y The Y coordinate of the top edge.

w The width of the rectangle.

h The height of the rectangle.

r The radius of the semicircles forming the corners.

color The color of the rectangle (optional; defaults to WHITE).

Definition at line 716 of file Arduboy2.cpp.

6.3.2.40 void Arduboy2Base::fillScreen (uint8_t color = WHITE)

Fill the screen buffer with the specified color.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 91

Parameters

color The fill color (optional; defaults to WHITE).

Definition at line 652 of file Arduboy2.cpp.

6.3.2.41 void Arduboy2Base::fillTriangle (int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color =
WHITE)

Draw a filled-in triangle given the coordinates of each corner.

Parameters

x0,x1,x2 The X coordinates of the corners.

y0,y1,y2 The Y coordinates of the corners.

color The triangle's color (optional; defaults to WHITE).

A triangle is drawn by specifying each of the three corner locations. The corners can be at any position with respect
to the others.

Definition at line 735 of file Arduboy2.cpp.

6.3.2.42 void Arduboy2Base::flashlight ()

Turn the RGB LED and display fully on to act as a small flashlight/torch.

Checks if the UP button is pressed and if so turns the RGB LED and all display pixels fully on. If the UP button is
detected, this function does not exit. The Arduboy must be restarted after flashlight mode is used.

This function is called by begin() and can be called by a sketch after boot().

Note

This function also contains code to address a problem with uploading a new sketch, for sketches that interfere
with the bootloader "magic number". This problem occurs with certain sketches that use large amounts of
RAM. Being in flashlight mode when uploading a new sketch can fix this problem.
Therefore, for sketches that potentially could cause this problem, and use boot() instead of begin(), it is
recommended that a call to flashlight() be included after calling boot(). If program space is limited,
safeMode() can be used instead of flashlight().

See also

begin() boot() safeMode()

Definition at line 73 of file Arduboy2.cpp.

6.3.2.43 void Arduboy2Core::flipHorizontal (bool flipped) [static], [inherited]

Flip the display horizontally or set it back to normal.

Generated by Doxygen

92 Class Documentation

Parameters

flipped true will set horizontal flip mode. false will set normal horizontal orientation.

Calling this function with a value of true will cause the X coordinate to start at the left edge of the display instead
of the right, effectively flipping the display horizontally.

Once in horizontal flip mode, it will remain this way until normal horizontal mode is set by calling this function with a
value of false.

See also

flipVertical()

Definition at line 428 of file Arduboy2Core.cpp.

6.3.2.44 void Arduboy2Core::flipVertical (bool flipped) [static], [inherited]

Flip the display vertically or set it back to normal.

Parameters

flipped true will set vertical flip mode. false will set normal vertical orientation.

Calling this function with a value of true will cause the Y coordinate to start at the bottom edge of the display
instead of the top, effectively flipping the display vertically.

Once in vertical flip mode, it will remain this way until normal vertical mode is set by calling this function with a value
of false.

See also

flipHorizontal()

Definition at line 422 of file Arduboy2Core.cpp.

6.3.2.45 void Arduboy2Core::freeRGBled () [static], [inherited]

Relinquish analog control of the RGB LED.

Using the RGB LED in analog mode prevents further use of the LED in digital mode. This function will restore the
pins used for the LED, so it can be used in digital mode.

See also

digitalWriteRGB() setRGBled()

Definition at line 481 of file Arduboy2Core.cpp.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 93

6.3.2.46 unsigned long Arduboy2Base::generateRandomSeed ()

Create a seed suitable for use with a random number generator.

Returns

A random value that can be used to seed a random number generator.

The returned value will be a random value derived from entropy from an ADC reading of a floating pin combined
with the microseconds since boot.

This method is still most effective when called after a semi-random time, such as after a user hits a button to start a
game or other semi-random event.

See also

initRandomSeed()

Definition at line 296 of file Arduboy2.cpp.

6.3.2.47 uint8_t ∗ Arduboy2Base::getBuffer ()

Get a pointer to the display buffer in RAM.

Returns

A pointer to the display buffer array in RAM.

The location of the display buffer in RAM, which is displayed using display(), can be gotten using this function.
The buffer can then be read and directly manipulated.

Note

The display buffer array, sBuffer, is public. A sketch can access it directly. Doing so may be more efficient
than accessing it via the pointer returned by getBuffer().

See also

sBuffer

Definition at line 1040 of file Arduboy2.cpp.

6.3.2.48 uint8_t Arduboy2Base::getPixel (uint8_t x, uint8_t y)

Returns the state of the given pixel in the screen buffer.

Parameters

x The X coordinate of the pixel.

y The Y coordinate of the pixel.
Generated by Doxygen

94 Class Documentation

Returns

WHITE if the pixel is on or BLACK if the pixel is off.

Definition at line 389 of file Arduboy2.cpp.

6.3.2.49 uint8_t Arduboy2Core::height () [static], [inherited]

Get the height of the display in pixels.

Returns

The height of the display in pixels.

Note

In most cases, the defined value HEIGHT would be better to use instead of this function.

Definition at line 303 of file Arduboy2Core.cpp.

6.3.2.50 void Arduboy2Core::idle () [static], [inherited]

Idle the CPU to save power.

This puts the CPU in idle sleep mode. You should call this as often as you can for the best power savings. The timer
0 overflow interrupt will wake up the chip every 1ms, so even at 60 FPS a well written app should be able to sleep
maybe half the time in between rendering it's own frames.

Definition at line 268 of file Arduboy2Core.cpp.

6.3.2.51 void Arduboy2Base::initRandomSeed ()

Seed the random number generator with a random value.

The Arduino random number generator is seeded with a random value derived from entropy from an ADC reading of
a floating pin combined with the microseconds since boot. The seed value is provided by calling the generate←↩

RandomSeed() function.

This method is still most effective when called after a semi-random time, such as after a user hits a button to start a
game or other semi-random event.

See also

generateRandomSeed()

Definition at line 313 of file Arduboy2.cpp.

6.3.2.52 void Arduboy2Core::invert (bool inverse) [static], [inherited]

Invert the entire display or set it back to normal.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 95

Parameters

inverse true will invert the display. false will set the display to no-inverted.

Calling this function with a value of true will set the display to inverted mode. A pixel with a value of 0 will be on
and a pixel set to 1 will be off.

Once in inverted mode, the display will remain this way until it is set back to non-inverted mode by calling this
function with false.

Definition at line 409 of file Arduboy2Core.cpp.

6.3.2.53 bool Arduboy2Base::justPressed (uint8_t button)

Check if a button has just been pressed.

Parameters

button The button to test for. Only one button should be specified.

Returns

true if the specified button has just been pressed.

Return true if the given button was pressed between the latest call to pollButtons() and previous call to
pollButtons(). If the button has been held down over multiple polls, this function will return false.

There is no need to check for the release of the button since it must have been released for this function to return
true when pressed again.

This function should only be used to test a single button.

See also

pollButtons() justReleased()

Definition at line 1061 of file Arduboy2.cpp.

6.3.2.54 bool Arduboy2Base::justReleased (uint8_t button)

Check if a button has just been released.

Parameters

button The button to test for. Only one button should be specified.

Generated by Doxygen

96 Class Documentation

Returns

true if the specified button has just been released.

Return true if the given button, having previously been pressed, was released between the latest call to poll←↩

Buttons() and previous call to pollButtons(). If the button has remained released over multiple polls, this
function will return false.

There is no need to check for the button having been pressed since it must have been previously pressed for this
function to return true upon release.

This function should only be used to test a single button.

Note

There aren't many cases where this function would be needed. Wanting to know if a button has been released,
without knowing when it was pressed, is uncommon.

See also

pollButtons() justPressed()

Definition at line 1066 of file Arduboy2.cpp.

6.3.2.55 void Arduboy2Core::LCDCommandMode () [static], [inherited]

Put the display into command mode.

When placed in command mode, data that is sent to the display will be treated as commands.

See the SSD1306 controller and OLED display documents for available commands and command sequences.

Links:

• https://www.adafruit.com/datasheets/SSD1306.pdf

• http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.←↩

pdf

Note

This is a low level function that is not intended for general use in a sketch. It has been made public and
documented for use by derived classes.

See also

LCDDataMode() sendLCDCommand() SPItransfer()

Definition at line 222 of file Arduboy2Core.cpp.

Generated by Doxygen

https://www.adafruit.com/datasheets/SSD1306.pdf
http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.pdf
http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.pdf

6.3 Arduboy2Base Class Reference 97

6.3.2.56 void Arduboy2Core::LCDDataMode () [static], [inherited]

Put the display into data mode.

When placed in data mode, data that is sent to the display will be considered as data to be displayed.

Note

This is a low level function that is not intended for general use in a sketch. It has been made public and
documented for use by derived classes.

See also

LCDCommandMode() SPItransfer()

Definition at line 217 of file Arduboy2Core.cpp.

6.3.2.57 bool Arduboy2Base::nextFrame ()

Indicate that it's time to render the next frame.

Returns

true if it's time for the next frame.

When this function returns true, the amount of time has elapsed to display the next frame, as specified by set←↩

FrameRate().

This function will normally be called at the start of the rendering loop which would wait for true to be returned
before rendering and displaying the next frame.

example:

void loop() {
if (!arduboy.nextFrame()) {
return; // go back to the start of the loop

}
// render and display the next frame

}

See also

setFrameRate() setFrameDuration() nextFrameDEV()

Definition at line 250 of file Arduboy2.cpp.

Generated by Doxygen

98 Class Documentation

6.3.2.58 bool Arduboy2Base::nextFrameDEV ()

Indicate that it's time to render the next frame, and visually indicate if the code is running slower than the desired
frame rate. FOR USE DURING DEVELOPMENT

Returns

true if it's time for the next frame.

This function is intended to be used in place of nextFrame() during the development of a sketch. It does the
same thing as nextFrame() but additionally will light the yellow TX LED (at the bottom, to the left of the U←↩

SB connector) whenever a frame takes longer to generate than the time allotted per frame, as determined by the
setFrameRate() function.

Therefore, whenever the TX LED comes on (while not communicating over USB), it indicates that the sketch is
running slower than the desired rate set by setFrameRate(). In this case the developer may wish to set a
slower frame rate, or reduce or optimize the code for such frames.

Note

Once a sketch is ready for release, it would be expected that nextFrameDEV() calls be restored to next←↩

Frame().

See also

nextFrame() cpuLoad() setFrameRate()

Definition at line 278 of file Arduboy2.cpp.

6.3.2.59 bool Arduboy2Base::notPressed (uint8_t buttons)

Test if the specified buttons are not pressed.

Parameters

buttons A bit mask indicating which buttons to test. (Can be a single button)

Returns

true if all buttons in the provided mask are currently released.

Read the state of the buttons and return true if all the buttons in the specified mask are currently released.

Example: if (notPressed(UP_BUTTON))

Note

This function does not perform any button debouncing.

Definition at line 1050 of file Arduboy2.cpp.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 99

6.3.2.60 void Arduboy2Core::paint8Pixels (uint8_t pixels) [static], [inherited]

Paint 8 pixels vertically to the display.

Generated by Doxygen

100 Class Documentation

Parameters

pixels A byte whose bits specify a vertical column of 8 pixels.

A byte representing a vertical column of 8 pixels is written to the display at the current page and column address.
The address is then incremented. The page/column address will wrap to the start of the display (the top left) when
it increments past the end (lower right).

The least significant bit represents the top pixel in the column. A bit set to 1 is lit, 0 is unlit.

Example:

X = lit pixels, . = unlit pixels

blank() paint8Pixels() 0xFF, 0, 0xF0, 0, 0x0F
v TOP LEFT corner (8x9) v TOP LEFT corner
. (page 1) X . . . X . . . (page 1)
. X . . . X . . .
. X . . . X . . .
. X . . . X . . .
. X . X
. X . X
. X . X
. (end of page 1) X . X (end of page 1)
. (page 2) (page 2)

Definition at line 308 of file Arduboy2Core.cpp.

6.3.2.61 void Arduboy2Core::paintScreen (const uint8_t ∗ image) [static], [inherited]

Paints an entire image directly to the display from program memory.

Parameters

image A byte array in program memory representing the entire contents of the display.

The contents of the specified array in program memory is written to the display. Each byte in the array represents
a vertical column of 8 pixels with the least significant bit at the top. The bytes are written starting at the top left,
progressing horizontally and wrapping at the end of each row, to the bottom right. The size of the array must exactly
match the number of pixels in the entire display.

See also

paint8Pixels()

Definition at line 313 of file Arduboy2Core.cpp.

6.3.2.62 void Arduboy2Core::paintScreen (uint8_t image[], bool clear = false) [static], [inherited]

Paints an entire image directly to the display from an array in RAM.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 101

Parameters

image A byte array in RAM representing the entire contents of the display.

clear If true the array in RAM will be cleared to zeros upon return from this function. If false the RAM
buffer will remain unchanged. (optional; defaults to false)

The contents of the specified array in RAM is written to the display. Each byte in the array represents a vertical
column of 8 pixels with the least significant bit at the top. The bytes are written starting at the top left, progressing
horizontally and wrapping at the end of each row, to the bottom right. The size of the array must exactly match the
number of pixels in the entire display.

If parameter clear is set to true the RAM array will be cleared to zeros after its contents are written to the
display.

See also

paint8Pixels()

Definition at line 327 of file Arduboy2Core.cpp.

6.3.2.63 void Arduboy2Base::pollButtons ()

Poll the buttons and track their state over time.

Read and save the current state of the buttons and also keep track of the button state when this function was
previouly called. These states are used by the justPressed() and justReleased() functions to determine
if a button has changed state between now and the previous call to pollButtons().

This function should be called once at the start of each new frame.

The justPressed() and justReleased() functions rely on this function.

example:

void loop() {
if (!arduboy.nextFrame()) {
return;

}
arduboy.pollButtons();

// use justPressed() as necessary to determine if a button was just pressed

Note

As long as the elapsed time between calls to this function is long enough, buttons will be naturally debounced.
Calling it once per frame at a frame rate of 60 or lower (or possibly somewhat higher), should be sufficient.

See also

justPressed() justReleased()

Definition at line 1055 of file Arduboy2.cpp.

6.3.2.64 bool Arduboy2Base::pressed (uint8_t buttons)

Test if the specified buttons are pressed.

Generated by Doxygen

102 Class Documentation

Parameters

buttons A bit mask indicating which buttons to test. (Can be a single button)

Returns

true if all buttons in the provided mask are currently pressed.

Read the state of the buttons and return true if all the buttons in the specified mask are being pressed.

Example: if (pressed(LEFT_BUTTON + A_BUTTON))

Note

This function does not perform any button debouncing.

Definition at line 1045 of file Arduboy2.cpp.

6.3.2.65 bool Arduboy2Base::readShowBootLogoFlag ()

Read the "Show Boot Logo" flag in system EEPROM.

Returns

true if the flag is set to indicate that the boot logo sequence should be displayed. false if the flag is set to
not display the boot logo sequence.

The "Show Boot Logo" flag is used to determine whether the system boot logo sequence is to be displayed when
the system boots up. This function returns the value of this flag.

See also

writeShowBootLogoFlag() bootLogo()

Definition at line 1133 of file Arduboy2.cpp.

6.3.2.66 bool Arduboy2Base::readShowBootLogoLEDsFlag ()

Read the "Show LEDs with boot logo" flag in system EEPROM.

Returns

true if the flag is set to indicate that the RGB LEDs should be flashed. false if the flag is set to leave the
LEDs off.

The "Show LEDs with boot logo" flag is used to determine whether the RGB LEDs should be flashed in sequence
while the boot logo is being displayed. This function returns the value of this flag.

See also

writeShowBootLogoLEDsFlag()

Definition at line 1159 of file Arduboy2.cpp.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 103

6.3.2.67 bool Arduboy2Base::readShowUnitNameFlag ()

Read the "Show Unit Name" flag in system EEPROM.

Returns

true if the flag is set to indicate that the unit name should be displayed. false if the flag is set to not display
the unit name.

The "Show Unit Name" flag is used to determine whether the system unit name is to be displayed at the end of the
boot logo sequence. This function returns the value of this flag.

See also

writeShowUnitNameFlag() writeUnitName() readUnitName() Arduboy2::bootLogoExtra()

Definition at line 1146 of file Arduboy2.cpp.

6.3.2.68 uint16_t Arduboy2Base::readUnitID ()

Read the unit ID from system EEPROM.

Returns

The value of the unit ID stored in system EEPROM.

This function reads the unit ID that has been set in system EEPROM. The ID can be any value. It is intended to
allow different units to be uniquely identified.

See also

writeUnitID() readUnitName()

Definition at line 1085 of file Arduboy2.cpp.

6.3.2.69 uint8_t Arduboy2Base::readUnitName (char ∗ name)

Read the unit name from system EEPROM.

Parameters

name A pointer to a string array variable where the unit name will be placed. The string will be up to 6
characters and terminated with a null (0x00) character, so the provided array must be at least 7 bytes
long.

Returns

The length of the string (0-6).

Generated by Doxygen

104 Class Documentation

This function reads the unit name that has been set in system EEPROM. The name is in ASCII and can contain any
values except 0xFF and the null (0x00) terminator value.

The name can be used for any purpose. It could identify the owner or give the unit itself a nickname. A sketch could
use it to automatically fill in a name or initials in a high score table, or display it as the "player" when the opponent
is the computer.

Note

Sketches can use the defined value ARDUBOY_UNIT_NAME_LEN instead of hard coding a 6 when working
with the unit name. For example, to allocate a buffer and read the unit name into it:

// Buffer for maximum name length plus the terminator
char unitName[ARDUBOY_UNIT_NAME_LEN + 1];

// The actual name length
byte unitNameLength;

unitNameLength = arduboy.readUnitName(unitName);

See also

writeUnitName() readUnitID() Arduboy2::bootLogoExtra()

Definition at line 1097 of file Arduboy2.cpp.

6.3.2.70 void Arduboy2Core::safeMode () [static], [inherited]

Allow upload when the bootloader "magic number" could be corrupted.

If the UP button is held when this function is entered, the RGB LED will be lit and timer 0 will be disabled, then
the sketch will remain in a tight loop. This is to address a problem with uploading a new sketch, for sketches that
interfere with the bootloader "magic number". The problem occurs with certain sketches that use large amounts of
RAM.

This function should be called after boot() in sketches that potentially could cause the problem.

It is intended to replace the flashlight() function when more program space is required. If possible, it is more
desirable to use flashlight(), so that the actual flashlight feature isn't lost.

See also

Arduboy2Base::flashlight() boot()

Definition at line 249 of file Arduboy2Core.cpp.

6.3.2.71 void Arduboy2Core::sendLCDCommand (uint8_t command) [static], [inherited]

Send a single command byte to the display.

Parameters

command The command byte to send to the display.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 105

The display will be set to command mode then the specified command byte will be sent. The display will then be
set to data mode. Multi-byte commands can be sent by calling this function multiple times.

Note

Sending improper commands to the display can place it into invalid or unexpected states, possibly even
causing physical damage.

Definition at line 400 of file Arduboy2Core.cpp.

6.3.2.72 void Arduboy2Base::setFrameDuration (uint8_t duration)

Set the frame rate, used by the frame control functions, by giving the duration of each frame.

Parameters

duration The desired duration of each frame in milliseconds.

Set the frame rate by specifying the duration of each frame in milliseconds. This is used by nextFrame() to
update frames at a given rate. If this function or setFrameRate() isn't used, the default will be 16ms per frame.

Normally, the frame rate would be set to the desired value once, at the start of the game, but it can be changed at
any time to alter the frame update rate.

See also

nextFrame() setFrameRate()

Definition at line 240 of file Arduboy2.cpp.

6.3.2.73 void Arduboy2Base::setFrameRate (uint8_t rate)

Set the frame rate used by the frame control functions.

Parameters

rate The desired frame rate in frames per second.

Set the frame rate, in frames per second, used by nextFrame() to update frames at a given rate. If this function
or setFrameDuration() isn't used, the default rate will be 60 (actually 62.5, see note below).

Normally, the frame rate would be set to the desired value once, at the start of the game, but it can be changed at
any time to alter the frame update rate.

Note

The given rate is internally converted to a frame duration in milliseconds, rounded down to the nearest integer.
Therefore, the actual rate will be equal to or higher than the rate given.
For example, 60 FPS would be 16.67ms per frame. This will be rounded down to 16ms, giving an actual frame
rate of 62.5 FPS.

Generated by Doxygen

106 Class Documentation

See also

nextFrame() setFrameDuration()

Definition at line 235 of file Arduboy2.cpp.

6.3.2.74 void Arduboy2Core::setRGBled (uint8_t red, uint8_t green, uint8_t blue) [static], [inherited]

Set the light output of the RGB LED.

Parameters

red,green,blue The brightness value for each LED.

The RGB LED is actually individual red, green and blue LEDs placed very close together in a single package. By
setting the brightness of each LED, the RGB LED can show various colors and intensities. The brightness of each
LED can be set to a value from 0 (fully off) to 255 (fully on).

Note

Certain libraries that take control of the hardware timers may interfere with the ability of this function to properly
control the RGB LED. ArduboyPlaytune is one such library known to do this. The digitalWriteRGB() function
will still work properly in this case.

Note

Many of the Kickstarter Arduboys were accidentally shipped with the RGB LED installed incorrectly. For these
units, the green LED cannot be lit. As long as the green led is set to off, setting the red LED will actually
control the blue LED and setting the blue LED will actually control the red LED. If the green LED is turned fully
on, none of the LEDs will light.

See also

setRGBled(uint8_t, uint8_t) digitalWriteRGB() freeRGBled()

Definition at line 435 of file Arduboy2Core.cpp.

6.3.2.75 void Arduboy2Core::setRGBled (uint8_t color, uint8_t val) [static], [inherited]

Set the brightness of one of the RGB LEDs without affecting the others.

Parameters

color The name of the LED to set. The value given should be one of RED_LED, GREEN_LED or BLUE_LED.

val The brightness value for the LED, from 0 to 255.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 107

Note

In order to use this function, the 3 parameter version must first be called at least once, in order to initialize the
hardware.

This 2 parameter version of the function will set the brightness of a single LED within the RGB LED without affecting
the current brightness of the other two. See the description of the 3 parameter version of this function for more
details on the RGB LED.

See also

setRGBled(uint8_t, uint8_t, uint8_t) digitalWriteRGB() freeRGBled()

Definition at line 457 of file Arduboy2Core.cpp.

6.3.2.76 void Arduboy2Core::SPItransfer (uint8_t data) [static], [inherited]

Transfer a byte to the display.

Parameters

data The byte to be sent to the display.

Transfer one byte to the display over the SPI port and wait for the transfer to complete. The byte will either be
interpreted as a command or as data to be placed on the screen, depending on the command/data mode.

See also

LCDDataMode() LCDCommandMode() sendLCDCommand()

Definition at line 236 of file Arduboy2Core.cpp.

6.3.2.77 void Arduboy2Base::systemButtons ()

Handle buttons held on startup for system control.

This function is called by begin() and can be called by a sketch after boot().

Hold the B button when booting to enter system control mode. The B button must be held continuously to remain in
this mode. Then, pressing other buttons will perform system control functions:

• UP: Set "sound enabled" in EEPROM

• DOWN: Set "sound disabled" (mute) in EEPROM

See also

begin() boot()

Definition at line 94 of file Arduboy2.cpp.

Generated by Doxygen

108 Class Documentation

6.3.2.78 void Arduboy2Base::waitNoButtons ()

Wait until all buttons have been released.

This function is called by begin() and can be called by a sketch after boot().

It won't return unless no buttons are being pressed. A short delay is performed each time before testing the state of
the buttons to do a simple button debounce.

This function is called at the end of begin() to make sure no buttons used to perform system start up actions are
still being pressed, to prevent them from erroneously being detected by the sketch code itself.

See also

begin() boot()

Definition at line 227 of file Arduboy2.cpp.

6.3.2.79 uint8_t Arduboy2Core::width () [static], [inherited]

Get the width of the display in pixels.

Returns

The width of the display in pixels.

Note

In most cases, the defined value WIDTH would be better to use instead of this function.

Definition at line 301 of file Arduboy2Core.cpp.

6.3.2.80 void Arduboy2Base::writeShowBootLogoFlag (bool val)

Write the "Show Boot Logo" flag in system EEPROM.

Parameters

val If true the flag is set to indicate that the boot logo sequence should be displayed. If false the flag is
set to not display the boot logo sequence.

The "Show Boot Logo" flag is used to determine whether the system boot logo sequence is to be displayed when
the system boots up. This function allows the flag to be saved with the desired value.

See also

readShowBootLogoFlag() bootLogo()

Definition at line 1138 of file Arduboy2.cpp.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 109

6.3.2.81 void Arduboy2Base::writeShowBootLogoLEDsFlag (bool val)

Write the "Show LEDs with boot logo" flag in system EEPROM.

Parameters

val If true the flag is set to indicate that the RGB LEDs should be flashed. If false the flag is set to leave
the LEDs off.

The "Show LEDs with boot logo" flag is used to determine whether the RGB LEDs should be flashed in sequence
while the boot logo is being displayed. This function allows the flag to be saved with the desired value.

See also

readShowBootLogoLEDsFlag()

Definition at line 1164 of file Arduboy2.cpp.

6.3.2.82 void Arduboy2Base::writeShowUnitNameFlag (bool val)

Write the "Show Unit Name" flag in system EEPROM.

Parameters

val If true the flag is set to indicate that the unit name should be displayed. If false the flag is set to not
display the unit name.

The "Show Unit Name" flag is used to determine whether the system unit name is to be displayed at the end of the
boot logo sequence. This function allows the flag to be saved with the desired value.

See also

readShowUnitNameFlag() writeUnitName() readUnitName() Arduboy2::bootLogoExtra()

Definition at line 1151 of file Arduboy2.cpp.

6.3.2.83 void Arduboy2Base::writeUnitID (uint16_t id)

Write a unit ID to system EEPROM.

Parameters

id The value of the unit ID to be stored in system EEPROM.

This function writes a unit ID to a reserved location in system EEPROM. The ID can be any value. It is intended to
allow different units to be uniquely identified.

Generated by Doxygen

110 Class Documentation

See also

readUnitID() writeUnitName()

Definition at line 1091 of file Arduboy2.cpp.

6.3.2.84 void Arduboy2Base::writeUnitName (char ∗ name)

Write a unit name to system EEPROM.

Parameters

name A pointer to a string array variable containing the unit name to be saved. The string can be up to 6
characters and must be terminated with a null (0x00) character. It can contain any values except 0xFF.

This function writes a unit name to a reserved area in system EEPROM. The name is in ASCII and can contain any
values except 0xFF and the null (0x00) terminator value. The newline character (LF, \n, 0x0A) and carriage return
character (CR, \r, 0x0D) should also be avoided.

The name can be used for any purpose. It could identify the owner or give the unit itself a nickname. A sketch could
use it to automatically fill in a name or initials in a high score table, or display it as the "player" when the opponent
is the computer.

Note

Sketches can use the defined value ARDUBOY_UNIT_NAME_LEN instead of hard coding a 6 when working
with the unit name.

See also

readUnitName() writeUnitID() Arduboy2::bootLogoExtra()

Definition at line 1117 of file Arduboy2.cpp.

6.3.3 Member Data Documentation

6.3.3.1 Arduboy2Audio Arduboy2Base::audio

An object created to provide audio control functions within this class.

This object is created to eliminate the need for a sketch to create an Arduboy2Audio class object itself.

See also

Arduboy2Audio

Definition at line 218 of file Arduboy2.h.

Generated by Doxygen

6.3 Arduboy2Base Class Reference 111

6.3.3.2 uint16_t Arduboy2Base::frameCount

A counter which is incremented once per frame.

This counter is incremented once per frame when using the nextFrame() function. It will wrap to zero when it
reaches its maximum value.

It could be used to have an event occur for a given number of frames, or a given number of frames later, in a way
that wouldn't be quantized the way that using everyXFrames() might.

example:

// move for 10 frames when right button is pressed, if not already moving
if (!moving) {

if (arduboy.justPressed(RIGHT_BUTTON)) {
endMoving = arduboy.frameCount + 10;
moving = true;

}
} else {

movePlayer();
if (arduboy.frameCount == endMoving) {
moving = false;

}
}

This counter could also be used to determine the number of frames that have elapsed between events but the
possibility of the counter wrapping would have to be accounted for.

See also

nextFrame() everyXFrames()

Definition at line 1296 of file Arduboy2.h.

6.3.3.3 uint8_t Arduboy2Base::sBuffer [static]

The display buffer array in RAM.

The display buffer (also known as the screen buffer) contains an image bitmap of the desired contents of the display,
which is written to the display using the display() function. The drawing functions of this library manipulate the
contents of the display buffer. A sketch can also access the display buffer directly.

See also

getBuffer()

Definition at line 1310 of file Arduboy2.h.

The documentation for this class was generated from the following files:

• src/Arduboy2.h
• src/Arduboy2.cpp

Generated by Doxygen

112 Class Documentation

6.4 Arduboy2Core Class Reference

Lower level functions generally dealing directly with the hardware.

#include <Arduboy2Core.h>

Inheritance diagram for Arduboy2Core:

Arduboy2Core

+ Arduboy2Core()
+ idle()
+ LCDDataMode()
+ LCDCommandMode()
+ SPItransfer()
+ displayOff()
+ displayOn()
+ width()
+ height()
+ buttonsState()
+ paint8Pixels()
and 18 more...
setCPUSpeed8MHz()
bootSPI()
bootOLED()
bootPins()
bootPowerSaving()

Arduboy2Base

+ audio
+ frameCount
+ sBuffer
currentButtonState
previousButtonState
eachFrameMillis
thisFrameStart
justRendered
lastFrameDurationMs

+ Arduboy2Base()
+ begin()
+ flashlight()
+ systemButtons()
+ bootLogo()
+ bootLogoCompressed()
+ bootLogoSpritesSelfMasked()
+ bootLogoSpritesOverwrite()
+ bootLogoSpritesBSelfMasked()
+ bootLogoSpritesBOverwrite()
and 47 more...
+ drawPixel()
+ drawBitmap()
+ drawCompressed()
+ collide()
+ collide()
sysCtrlSound()
drawLogoBitmap()
drawLogoCompressed()
drawLogoSpritesSelfMasked()
drawLogoSpritesOverwrite()
drawLogoSpritesBSelfMasked()
drawLogoSpritesBOverwrite()

Arduboy2

cursor_x
cursor_y
textColor
textBackground
textSize
textWrap

+ Arduboy2()
+ bootLogoText()
+ bootLogoExtra()
+ write()
+ drawChar()
+ setCursor()
+ getCursorX()
+ getCursorY()
+ setTextColor()
+ getTextColor()
and 7 more...

Generated by Doxygen

6.4 Arduboy2Core Class Reference 113

Collaboration diagram for Arduboy2Core:

Arduboy2Core

+ Arduboy2Core()
+ idle()
+ LCDDataMode()
+ LCDCommandMode()
+ SPItransfer()
+ displayOff()
+ displayOn()
+ width()
+ height()
+ buttonsState()
+ paint8Pixels()
and 18 more...
setCPUSpeed8MHz()
bootSPI()
bootOLED()
bootPins()
bootPowerSaving()

Static Public Member Functions

• static void idle ()

Idle the CPU to save power.

• static void LCDDataMode ()

Put the display into data mode.

• static void LCDCommandMode ()

Put the display into command mode.

• static void SPItransfer (uint8_t data)

Transfer a byte to the display.

• static void displayOff ()

Turn the display off.

• static void displayOn ()

Turn the display on.

• static uint8_t width ()

Get the width of the display in pixels.

• static uint8_t height ()

Get the height of the display in pixels.

• static uint8_t buttonsState ()

Get the current state of all buttons as a bitmask.

• static void paint8Pixels (uint8_t pixels)

Paint 8 pixels vertically to the display.

• static void paintScreen (const uint8_t ∗image)

Generated by Doxygen

114 Class Documentation

Paints an entire image directly to the display from program memory.
• static void paintScreen (uint8_t image[], bool clear=false)

Paints an entire image directly to the display from an array in RAM.
• static void blank ()

Blank the display screen by setting all pixels off.
• static void invert (bool inverse)

Invert the entire display or set it back to normal.
• static void allPixelsOn (bool on)

Turn all display pixels on or display the buffer contents.
• static void flipVertical (bool flipped)

Flip the display vertically or set it back to normal.
• static void flipHorizontal (bool flipped)

Flip the display horizontally or set it back to normal.
• static void sendLCDCommand (uint8_t command)

Send a single command byte to the display.
• static void setRGBled (uint8_t red, uint8_t green, uint8_t blue)

Set the light output of the RGB LED.
• static void setRGBled (uint8_t color, uint8_t val)

Set the brightness of one of the RGB LEDs without affecting the others.
• static void freeRGBled ()

Relinquish analog control of the RGB LED.
• static void digitalWriteRGB (uint8_t red, uint8_t green, uint8_t blue)

Set the RGB LEDs digitally, to either fully on or fully off.
• static void digitalWriteRGB (uint8_t color, uint8_t val)

Set one of the RGB LEDs digitally, to either fully on or fully off.
• static void boot ()

Initialize the Arduboy's hardware.
• static void safeMode ()

Allow upload when the bootloader "magic number" could be corrupted.
• static void delayShort (uint16_t ms) __attribute__((noinline))

Delay for the number of milliseconds, specified as a 16 bit value.
• static void exitToBootloader ()

Exit the sketch and start the bootloader.

6.4.1 Detailed Description

Lower level functions generally dealing directly with the hardware.

This class is inherited by Arduboy2Base and thus also Arduboy2, so wouldn't normally be used directly by a sketch.

Note

A friend class named Arduboy2Ex is declared by this class. The intention is to allow a sketch to create an
Arduboy2Ex class which would have access to the private and protected members of the Arduboy2Core class.
It is hoped that this may eliminate the need to create an entire local copy of the library, in order to extend the
functionality, in most circumstances.

Definition at line 331 of file Arduboy2Core.h.

6.4.2 Member Function Documentation

6.4.2.1 void Arduboy2Core::allPixelsOn (bool on) [static]

Turn all display pixels on or display the buffer contents.

Generated by Doxygen

6.4 Arduboy2Core Class Reference 115

Parameters

on true turns all pixels on. false displays the contents of the hardware display buffer.

Calling this function with a value of true will override the contents of the hardware display buffer and turn all pixels
on. The contents of the hardware buffer will remain unchanged.

Calling this function with a value of false will set the normal state of displaying the contents of the hardware
display buffer.

Note

All pixels will be lit even if the display is in inverted mode.

See also

invert()

Definition at line 416 of file Arduboy2Core.cpp.

6.4.2.2 void Arduboy2Core::blank () [static]

Blank the display screen by setting all pixels off.

All pixels on the screen will be written with a value of 0 to turn them off.

Definition at line 394 of file Arduboy2Core.cpp.

6.4.2.3 void Arduboy2Core::boot () [static]

Initialize the Arduboy's hardware.

This function initializes the display, buttons, etc.

This function is called by begin() so isn't normally called within a sketch. However, in order to free up some code
space, by eliminating some of the start up features, it can be called in place of begin(). The functions that begin()
would call after boot() can then be called to add back in some of the start up features, if desired. See the README
file or documentation on the main page for more details.

See also

Arduboy2Base::begin()

Definition at line 78 of file Arduboy2Core.cpp.

Generated by Doxygen

116 Class Documentation

6.4.2.4 uint8_t Arduboy2Core::buttonsState () [static]

Get the current state of all buttons as a bitmask.

Returns

A bitmask of the state of all the buttons.

The returned mask contains a bit for each button. For any pressed button, its bit will be 1. For released buttons their
associated bits will be 0.

The following defined mask values should be used for the buttons:

LEFT_BUTTON, RIGHT_BUTTON, UP_BUTTON, DOWN_BUTTON, A_BUTTON, B_BUTTON

Definition at line 530 of file Arduboy2Core.cpp.

6.4.2.5 void Arduboy2Core::delayShort (uint16_t ms) [static]

Delay for the number of milliseconds, specified as a 16 bit value.

Generated by Doxygen

6.4 Arduboy2Core Class Reference 117

Parameters

ms The delay in milliseconds.

This function works the same as the Arduino delay() function except the provided value is 16 bits long, so
the maximum delay allowed is 65535 milliseconds (about 65.5 seconds). Using this function instead of Arduino
delay() will save a few bytes of code.

Definition at line 559 of file Arduboy2Core.cpp.

6.4.2.6 void Arduboy2Core::digitalWriteRGB (uint8_t red, uint8_t green, uint8_t blue) [static]

Set the RGB LEDs digitally, to either fully on or fully off.

Parameters

red,green,blue Use value RGB_ON or RGB_OFF to set each LED.

The RGB LED is actually individual red, green and blue LEDs placed very close together in a single package. This
3 parameter version of the function will set each LED either on or off, to set the RGB LED to 7 different colors at
their highest brightness or turn it off.

The colors are as follows:

RED LED GREEN_LED BLUE_LED COLOR
------- --------- -------- -----
RGB_OFF RGB_OFF RGB_OFF OFF
RGB_OFF RGB_OFF RGB_ON Blue
RGB_OFF RGB_ON RGB_OFF Green
RGB_OFF RGB_ON RGB_ON Cyan
RGB_ON RGB_OFF RGB_OFF Red
RGB_ON RGB_OFF RGB_ON Magenta
RGB_ON RGB_ON RGB_OFF Yellow
RGB_ON RGB_ON RGB_ON White

Note

Using the RGB LED in analog mode will prevent digital control of the LED. To restore the ability to control the
LED digitally, use the freeRGBled() function.

Note

Many of the Kickstarter Arduboys were accidentally shipped with the RGB LED installed incorrectly. For these
units, the green LED cannot be lit. As long as the green led is set to off, turning on the red LED will actually
light the blue LED and turning on the blue LED will actually light the red LED. If the green LED is turned on,
none of the LEDs will light.

See also

digitalWriteRGB(uint8_t, uint8_t) setRGBled() freeRGBled()

Definition at line 490 of file Arduboy2Core.cpp.

6.4.2.7 void Arduboy2Core::digitalWriteRGB (uint8_t color, uint8_t val) [static]

Set one of the RGB LEDs digitally, to either fully on or fully off.

Generated by Doxygen

118 Class Documentation

Parameters

color The name of the LED to set. The value given should be one of RED_LED, GREEN_LED or BLUE_LED.

val Indicates whether to turn the specified LED on or off. The value given should be RGB_ON or RGB_OFF.

This 2 parameter version of the function will set a single LED within the RGB LED either fully on or fully off. See the
description of the 3 parameter version of this function for more details on the RGB LED.

See also

digitalWriteRGB(uint8_t, uint8_t, uint8_t) setRGBled() freeRGBled()

Definition at line 504 of file Arduboy2Core.cpp.

6.4.2.8 void Arduboy2Core::displayOff () [static]

Turn the display off.

The display will clear and be put into a low power mode. This can be used to extend battery life when a game is
paused or when a sketch doesn't require anything to be displayed for a relatively long period of time.

See also

displayOn()

Definition at line 285 of file Arduboy2Core.cpp.

6.4.2.9 void Arduboy2Core::displayOn () [static]

Turn the display on.

Used to power up and reinitialize the display after calling displayOff().

Note

The previous call to displayOff() will have caused the display's buffer contents to be lost. The display
will have to be re-painted, which is usually done by calling display().

See also

displayOff()

Definition at line 296 of file Arduboy2Core.cpp.

Generated by Doxygen

6.4 Arduboy2Core Class Reference 119

6.4.2.10 void Arduboy2Core::exitToBootloader () [static]

Exit the sketch and start the bootloader.

The sketch will exit and the bootloader will be started in command mode. The effect will be similar to pressing the
reset button.

This function is intended to be used to allow uploading a new sketch, when the USB code has been removed to
gain more code space. Ideally, the sketch would present a "New Sketch Upload" menu or prompt telling the user
to "Press and hold the DOWN button when the procedure to upload a new sketch has been initiated". The sketch
would then wait for the DOWN button to be pressed and then call this function.

See also

ARDUBOY_NO_USB

Definition at line 564 of file Arduboy2Core.cpp.

6.4.2.11 void Arduboy2Core::flipHorizontal (bool flipped) [static]

Flip the display horizontally or set it back to normal.

Parameters

flipped true will set horizontal flip mode. false will set normal horizontal orientation.

Calling this function with a value of true will cause the X coordinate to start at the left edge of the display instead
of the right, effectively flipping the display horizontally.

Once in horizontal flip mode, it will remain this way until normal horizontal mode is set by calling this function with a
value of false.

See also

flipVertical()

Definition at line 428 of file Arduboy2Core.cpp.

6.4.2.12 void Arduboy2Core::flipVertical (bool flipped) [static]

Flip the display vertically or set it back to normal.

Parameters

flipped true will set vertical flip mode. false will set normal vertical orientation.

Calling this function with a value of true will cause the Y coordinate to start at the bottom edge of the display
instead of the top, effectively flipping the display vertically.

Generated by Doxygen

120 Class Documentation

Once in vertical flip mode, it will remain this way until normal vertical mode is set by calling this function with a value
of false.

See also

flipHorizontal()

Definition at line 422 of file Arduboy2Core.cpp.

6.4.2.13 void Arduboy2Core::freeRGBled () [static]

Relinquish analog control of the RGB LED.

Using the RGB LED in analog mode prevents further use of the LED in digital mode. This function will restore the
pins used for the LED, so it can be used in digital mode.

See also

digitalWriteRGB() setRGBled()

Definition at line 481 of file Arduboy2Core.cpp.

6.4.2.14 uint8_t Arduboy2Core::height () [static]

Get the height of the display in pixels.

Returns

The height of the display in pixels.

Note

In most cases, the defined value HEIGHT would be better to use instead of this function.

Definition at line 303 of file Arduboy2Core.cpp.

6.4.2.15 void Arduboy2Core::idle () [static]

Idle the CPU to save power.

This puts the CPU in idle sleep mode. You should call this as often as you can for the best power savings. The timer
0 overflow interrupt will wake up the chip every 1ms, so even at 60 FPS a well written app should be able to sleep
maybe half the time in between rendering it's own frames.

Definition at line 268 of file Arduboy2Core.cpp.

6.4.2.16 void Arduboy2Core::invert (bool inverse) [static]

Invert the entire display or set it back to normal.

Generated by Doxygen

6.4 Arduboy2Core Class Reference 121

Parameters

inverse true will invert the display. false will set the display to no-inverted.

Calling this function with a value of true will set the display to inverted mode. A pixel with a value of 0 will be on
and a pixel set to 1 will be off.

Once in inverted mode, the display will remain this way until it is set back to non-inverted mode by calling this
function with false.

Definition at line 409 of file Arduboy2Core.cpp.

6.4.2.17 void Arduboy2Core::LCDCommandMode () [static]

Put the display into command mode.

When placed in command mode, data that is sent to the display will be treated as commands.

See the SSD1306 controller and OLED display documents for available commands and command sequences.

Links:

• https://www.adafruit.com/datasheets/SSD1306.pdf

• http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.←↩

pdf

Note

This is a low level function that is not intended for general use in a sketch. It has been made public and
documented for use by derived classes.

See also

LCDDataMode() sendLCDCommand() SPItransfer()

Definition at line 222 of file Arduboy2Core.cpp.

6.4.2.18 void Arduboy2Core::LCDDataMode () [static]

Put the display into data mode.

When placed in data mode, data that is sent to the display will be considered as data to be displayed.

Note

This is a low level function that is not intended for general use in a sketch. It has been made public and
documented for use by derived classes.

See also

LCDCommandMode() SPItransfer()

Definition at line 217 of file Arduboy2Core.cpp.

6.4.2.19 void Arduboy2Core::paint8Pixels (uint8_t pixels) [static]

Paint 8 pixels vertically to the display.

Generated by Doxygen

https://www.adafruit.com/datasheets/SSD1306.pdf
http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.pdf
http://www.buydisplay.com/download/manual/ER-OLED013-1_Series_Datasheet.pdf

122 Class Documentation

Parameters

pixels A byte whose bits specify a vertical column of 8 pixels.

A byte representing a vertical column of 8 pixels is written to the display at the current page and column address.
The address is then incremented. The page/column address will wrap to the start of the display (the top left) when
it increments past the end (lower right).

The least significant bit represents the top pixel in the column. A bit set to 1 is lit, 0 is unlit.

Example:

X = lit pixels, . = unlit pixels

blank() paint8Pixels() 0xFF, 0, 0xF0, 0, 0x0F
v TOP LEFT corner (8x9) v TOP LEFT corner
. (page 1) X . . . X . . . (page 1)
. X . . . X . . .
. X . . . X . . .
. X . . . X . . .
. X . X
. X . X
. X . X
. (end of page 1) X . X (end of page 1)
. (page 2) (page 2)

Definition at line 308 of file Arduboy2Core.cpp.

6.4.2.20 void Arduboy2Core::paintScreen (const uint8_t ∗ image) [static]

Paints an entire image directly to the display from program memory.

Parameters

image A byte array in program memory representing the entire contents of the display.

The contents of the specified array in program memory is written to the display. Each byte in the array represents
a vertical column of 8 pixels with the least significant bit at the top. The bytes are written starting at the top left,
progressing horizontally and wrapping at the end of each row, to the bottom right. The size of the array must exactly
match the number of pixels in the entire display.

See also

paint8Pixels()

Definition at line 313 of file Arduboy2Core.cpp.

6.4.2.21 void Arduboy2Core::paintScreen (uint8_t image[], bool clear = false) [static]

Paints an entire image directly to the display from an array in RAM.

Generated by Doxygen

6.4 Arduboy2Core Class Reference 123

Parameters

image A byte array in RAM representing the entire contents of the display.

clear If true the array in RAM will be cleared to zeros upon return from this function. If false the RAM
buffer will remain unchanged. (optional; defaults to false)

The contents of the specified array in RAM is written to the display. Each byte in the array represents a vertical
column of 8 pixels with the least significant bit at the top. The bytes are written starting at the top left, progressing
horizontally and wrapping at the end of each row, to the bottom right. The size of the array must exactly match the
number of pixels in the entire display.

If parameter clear is set to true the RAM array will be cleared to zeros after its contents are written to the
display.

See also

paint8Pixels()

Definition at line 327 of file Arduboy2Core.cpp.

6.4.2.22 void Arduboy2Core::safeMode () [static]

Allow upload when the bootloader "magic number" could be corrupted.

If the UP button is held when this function is entered, the RGB LED will be lit and timer 0 will be disabled, then
the sketch will remain in a tight loop. This is to address a problem with uploading a new sketch, for sketches that
interfere with the bootloader "magic number". The problem occurs with certain sketches that use large amounts of
RAM.

This function should be called after boot() in sketches that potentially could cause the problem.

It is intended to replace the flashlight() function when more program space is required. If possible, it is more
desirable to use flashlight(), so that the actual flashlight feature isn't lost.

See also

Arduboy2Base::flashlight() boot()

Definition at line 249 of file Arduboy2Core.cpp.

6.4.2.23 void Arduboy2Core::sendLCDCommand (uint8_t command) [static]

Send a single command byte to the display.

Parameters

command The command byte to send to the display.

The display will be set to command mode then the specified command byte will be sent. The display will then be
set to data mode. Multi-byte commands can be sent by calling this function multiple times.

Generated by Doxygen

124 Class Documentation

Note

Sending improper commands to the display can place it into invalid or unexpected states, possibly even
causing physical damage.

Definition at line 400 of file Arduboy2Core.cpp.

6.4.2.24 void Arduboy2Core::setRGBled (uint8_t red, uint8_t green, uint8_t blue) [static]

Set the light output of the RGB LED.

Parameters

red,green,blue The brightness value for each LED.

The RGB LED is actually individual red, green and blue LEDs placed very close together in a single package. By
setting the brightness of each LED, the RGB LED can show various colors and intensities. The brightness of each
LED can be set to a value from 0 (fully off) to 255 (fully on).

Note

Certain libraries that take control of the hardware timers may interfere with the ability of this function to properly
control the RGB LED. ArduboyPlaytune is one such library known to do this. The digitalWriteRGB() function
will still work properly in this case.

Note

Many of the Kickstarter Arduboys were accidentally shipped with the RGB LED installed incorrectly. For these
units, the green LED cannot be lit. As long as the green led is set to off, setting the red LED will actually
control the blue LED and setting the blue LED will actually control the red LED. If the green LED is turned fully
on, none of the LEDs will light.

See also

setRGBled(uint8_t, uint8_t) digitalWriteRGB() freeRGBled()

Definition at line 435 of file Arduboy2Core.cpp.

6.4.2.25 void Arduboy2Core::setRGBled (uint8_t color, uint8_t val) [static]

Set the brightness of one of the RGB LEDs without affecting the others.

Parameters

color The name of the LED to set. The value given should be one of RED_LED, GREEN_LED or BLUE_LED.

val The brightness value for the LED, from 0 to 255.

Generated by Doxygen

6.4 Arduboy2Core Class Reference 125

Note

In order to use this function, the 3 parameter version must first be called at least once, in order to initialize the
hardware.

This 2 parameter version of the function will set the brightness of a single LED within the RGB LED without affecting
the current brightness of the other two. See the description of the 3 parameter version of this function for more
details on the RGB LED.

See also

setRGBled(uint8_t, uint8_t, uint8_t) digitalWriteRGB() freeRGBled()

Definition at line 457 of file Arduboy2Core.cpp.

6.4.2.26 void Arduboy2Core::SPItransfer (uint8_t data) [static]

Transfer a byte to the display.

Parameters

data The byte to be sent to the display.

Transfer one byte to the display over the SPI port and wait for the transfer to complete. The byte will either be
interpreted as a command or as data to be placed on the screen, depending on the command/data mode.

See also

LCDDataMode() LCDCommandMode() sendLCDCommand()

Definition at line 236 of file Arduboy2Core.cpp.

6.4.2.27 uint8_t Arduboy2Core::width () [static]

Get the width of the display in pixels.

Returns

The width of the display in pixels.

Note

In most cases, the defined value WIDTH would be better to use instead of this function.

Definition at line 301 of file Arduboy2Core.cpp.

The documentation for this class was generated from the following files:

• src/Arduboy2Core.h
• src/Arduboy2Core.cpp

Generated by Doxygen

126 Class Documentation

6.5 BeepPin1 Class Reference

Play simple square wave tones using speaker pin 1.

#include <Arduboy2Beep.h>

Collaboration diagram for BeepPin1:

BeepPin1

+ duration

+ begin()
+ tone()
+ tone()
+ timer()
+ noTone()
+ freq()

Static Public Member Functions

• static void begin ()

Set up the hardware.

• static void tone (uint16_t count)

Play a tone continually, until replaced by a new tone or stopped.

• static void tone (uint16_t count, uint8_t dur)

Play a tone for a given duration.

• static void timer ()

Handle the duration that a tone plays for.

• static void noTone ()

Stop a tone that is playing.

• static constexpr uint16_t freq (const float hz)

Convert a frequency to the required count.

Static Public Attributes

• static uint8_t duration = 0

The counter used by the timer() function to time the duration of a tone.

Generated by Doxygen

6.5 BeepPin1 Class Reference 127

6.5.1 Detailed Description

Play simple square wave tones using speaker pin 1.

Note

Class BeepPin2 provides identical functions for playing tones on speaker pin 2. Both classes can be used
in the same sketch to allow playing two tones at the same time. To do this, the begin() and timer()
functions of both classes must be used.

This class can be used to play square wave tones on speaker pin 1. The functions are designed to produce very
small and efficient code.

A tone can be set to play for a given duration, or continuously until stopped or replaced by a new tone. No interrupts
are used. A tone is generated by a hardware timer/counter directly toggling the pin, so once started, no CPU cycles
are used to actually play the tone. The program continues to run while a tone is playing. However, a small amount
of code is required to time and stop a tone after a given duration.

Tone frequencies can range from 15.26Hz to 1000000Hz.

Although there's no specific code to handle mute control, the Arduboy2Audio class will work since it has code to
mute sound by setting the speaker pins to input mode and unmute by setting the pins as outputs. The BeepPin1
class doesn't interfere with this operation.

In order to avoid needing to use interrupts, the duration of tones is timed by calling the timer() function continu-
ously at a fixed interval. The duration of a tone is given by specifying the number of times timer() will be called
before stopping the tone.

For sketches that use Arduboy2::nextFrame(), or some other method to generate frames at a fixed rate,
timer() can be called once per frame. Tone durations will then be given as the number of frames to play the
tone for. For example, with a rate of 60 frames per second a duration of 30 would be used to play a tone for half a
second.

The variable named duration is the counter that times the duration of a tone. A sketch can determine if a tone
is currently playing by testing if the duration variable is non-zero (assuming it's a timed tone, not a continuous
tone).

To keep the code small and efficient, the frequency of a tone is specified by the actual count value to be loaded
into to timer/counter peripheral. The frequency will be determined by the count provided and the clock rate of the
timer/counter. In order to allow a tone's frequency to be specified in hertz (cycles per second) the freq() helper
function is provided, which converts a given frequency to the required count value.

NOTE that it is intended that freq() only be called with constant values. If freq() is called with a variable, code
to perform floating point math will be included in the sketch, which will likely greatly increase the sketch's code size
unless the sketch also uses floating point math for other purposes.

The formulas for frequency/count conversion are:

count=(1000000/frequency)-1
frequency=1000000/(count+1)

Counts must be between 0 and 65535.

All members of the class are static, so it's not necessary to create an instance of the class in order to use it.
However, creating an instance doesn't produce any more code and it may make the source code smaller and make
it easier to switch to the BeepPin2 class if it becomes necessary.

The following is a basic example sketch, which will generate a tone when a button is pressed.

Generated by Doxygen

128 Class Documentation

#include <Arduboy2.h>
// There’s no need to #include <Arduboy2Beep.h>
// It will be included in Arduboy2.h

Arduboy2 arduboy;
BeepPin1 beep; // class instance for speaker pin 1

void setup() {
arduboy.begin();
arduboy.setFrameRate(50);
beep.begin(); // set up the hardware for playing tones

}

void loop() {
if (!arduboy.nextFrame()) {
return;

}

beep.timer(); // handle tone duration

arduboy.pollButtons();

if (arduboy.justPressed(A_BUTTON)) {
// play a 1000Hz tone for 100 frames (2 seconds at 50 FPS)
// beep.freq(1000) is used to convert 1000Hz to the required count
beep.tone(beep.freq(1000), 100);

}
}

Note

These functions, and the equivalents in class BeepPin2, will not work with a DevKit Arduboy because the
speaker pins used cannot be directly controlled by a timer/counter. "Dummy" functions are provided so a
sketch will compile and work properly but no sound will be produced.

See also

BeepPin2

Definition at line 120 of file Arduboy2Beep.h.

6.5.2 Member Function Documentation

6.5.2.1 void BeepPin1::begin () [static]

Set up the hardware.

Prepare the hardware for playing tones. This function must be called (usually in setup()) before using any of the
other functions in this class.

Definition at line 16 of file Arduboy2Beep.cpp.

6.5.2.2 static constexpr uint16_t BeepPin1::freq (const float hz) [inline], [static]

Convert a frequency to the required count.

Parameters

hz The frequency, in hertz (cycles per second), to be converted to a count.

Generated by Doxygen

6.5 BeepPin1 Class Reference 129

Returns

The required count to be loaded into the timer/counter for the given frequency.

This helper function will convert a desired tone frequency to the closest value required by the tone() function's
count parameter. The calculated count is rounded up or down to the nearest integer, if necessary.

Example:

beep.tone(beep.freq(440)); // play a 440Hz tone until stopped or replaced

Note

It is intended that freq() only be called with constant values. If freq() is called with a variable, code to
perform floating point math will be included in the sketch, which will likely greatly increase the sketch's code
size unless the sketch also uses floating point math for other purposes.

Definition at line 250 of file Arduboy2Beep.h.

6.5.2.3 void BeepPin1::noTone () [static]

Stop a tone that is playing.

If a tone is playing it will be stopped. It's safe to call this function even if a tone isn't currently playing.

See also

tone()

Definition at line 41 of file Arduboy2Beep.cpp.

6.5.2.4 void BeepPin1::timer () [static]

Handle the duration that a tone plays for.

This function must be called at a constant interval, which would normally be once per frame, in order to stop a tone
after the desired tone duration has elapsed.

If the value of the duration variable is not 0, it will be decremented. When the duration variable is decre-
mented to 0, a playing tone will be stopped.

Definition at line 34 of file Arduboy2Beep.cpp.

6.5.2.5 void BeepPin1::tone (uint16_t count) [static]

Play a tone continually, until replaced by a new tone or stopped.

Generated by Doxygen

130 Class Documentation

Parameters

count The count to be loaded into the timer/counter to play the desired frequency.

A tone is played indefinitely, until replaced by another tone or stopped using noTone().

The tone's frequency is determined by the specified count, which is loaded into the timer/counter that generates the
tone. A desired frequency can be converted into the required count value using the freq() function.

See also

freq() timer() noTone()

Definition at line 22 of file Arduboy2Beep.cpp.

6.5.2.6 void BeepPin1::tone (uint16_t count, uint8_t dur) [static]

Play a tone for a given duration.

Parameters

count The count to be loaded into the timer/counter to play the desired frequency.

dur The duration of the tone, used by timer().

A tone is played for the specified duration, or until replaced by another tone or stopped using noTone().

The tone's frequency is determined by the specified count, which is loaded into the timer/counter that generates the
tone. A desired frequency can be converted into the required count value using the freq() function.

The duration value is the number of times the timer() function must be called before the tone is stopped.

See also

freq() timer() noTone()

Definition at line 27 of file Arduboy2Beep.cpp.

6.5.3 Member Data Documentation

6.5.3.1 uint8_t BeepPin1::duration = 0 [static]

The counter used by the timer() function to time the duration of a tone.

This variable is set by the dur parameter of the tone() function. It is then decremented each time the timer()
function is called, if its value isn't 0. When timer() decrements it to 0, a tone that is playing will be stopped.

A sketch can determine if a tone is currently playing by testing if this variable is non-zero (assuming it's a timed
tone, not a continuous tone).

Example:

Generated by Doxygen

6.6 BeepPin2 Class Reference 131

beep.tone(beep.freq(1000), 15);
while (beep.duration != 0) { } // wait for the tone to stop playing

It can also be manipulated directly by the sketch, although this should seldom be necessary.

Definition at line 146 of file Arduboy2Beep.h.

The documentation for this class was generated from the following files:

• src/Arduboy2Beep.h
• src/Arduboy2Beep.cpp

6.6 BeepPin2 Class Reference

Play simple square wave tones using speaker pin 2.

#include <Arduboy2Beep.h>

Collaboration diagram for BeepPin2:

BeepPin2

+ duration

+ begin()
+ tone()
+ tone()
+ timer()
+ noTone()
+ freq()

Static Public Member Functions

• static void begin ()

Set up the hardware for playing tones using speaker pin 2.

• static void tone (uint16_t count)

Play a tone on speaker pin 2 continually, until replaced by a new tone or stopped.

• static void tone (uint16_t count, uint8_t dur)

Play a tone on speaker pin 2 for a given duration.

• static void timer ()

Handle the duration that a tone on speaker pin 2 plays for.

• static void noTone ()

Stop a tone that is playing on speaker pin 2.

• static constexpr uint16_t freq (const float hz)

Convert a frequency to the required count for speaker pin 2.

Generated by Doxygen

132 Class Documentation

Static Public Attributes

• static uint8_t duration = 0

The counter used by the timer() function to time the duration of a tone played on speaker pin 2.

6.6.1 Detailed Description

Play simple square wave tones using speaker pin 2.

This class contains the same functions as class BeepPin1 except they use speaker pin 2 instead of speaker pin
1.

Using BeepPin1 is more desirable, as it uses a 16 bit Timer, which can produce a greater frequency range and
resolution than the 10 bit Timer used by BeepPin2. However, if the sketch also includes other sound generating
code that uses speaker pin 1, BeepPin2 can be used to avoid conflict.

Tone frequencies on speaker pin 2 can range from 61.04Hz to 15625Hz using allowed counts from 3 to 1023.

The formulas for frequency/count conversion are:

count=(62500/frequency)-1
frequency=62500/(count+1)

See the documentation for BeepPin1 for more details.

See also

BeepPin1

Definition at line 282 of file Arduboy2Beep.h.

6.6.2 Member Function Documentation

6.6.2.1 void BeepPin2::begin () [static]

Set up the hardware for playing tones using speaker pin 2.

For details see BeepPin1::begin().

Definition at line 52 of file Arduboy2Beep.cpp.

6.6.2.2 static constexpr uint16_t BeepPin2::freq (const float hz) [inline], [static]

Convert a frequency to the required count for speaker pin 2.

Parameters

hz The frequency, in hertz (cycles per second), to be converted to a count.

Generated by Doxygen

6.6 BeepPin2 Class Reference 133

Returns

The required count to be loaded into the timer/counter for the given frequency.

For details see BeepPin1::freq().

Definition at line 355 of file Arduboy2Beep.h.

6.6.2.3 void BeepPin2::noTone () [static]

Stop a tone that is playing on speaker pin 2.

For details see BeepPin1::noTone().

Definition at line 81 of file Arduboy2Beep.cpp.

6.6.2.4 void BeepPin2::timer () [static]

Handle the duration that a tone on speaker pin 2 plays for.

For details see BeepPin1::timer().

Definition at line 74 of file Arduboy2Beep.cpp.

6.6.2.5 void BeepPin2::tone (uint16_t count) [static]

Play a tone on speaker pin 2 continually, until replaced by a new tone or stopped.

Parameters

count The count to be loaded into the timer/counter to play the desired frequency.

For details see BeepPin1::tone(uint16_t).

Definition at line 61 of file Arduboy2Beep.cpp.

6.6.2.6 void BeepPin2::tone (uint16_t count, uint8_t dur) [static]

Play a tone on speaker pin 2 for a given duration.

Parameters

count The count to be loaded into the timer/counter to play the desired frequency.

dur The duration of the tone, used by timer().

For details see BeepPin1::tone(uint16_t, uint8_t).

Definition at line 66 of file Arduboy2Beep.cpp.

Generated by Doxygen

134 Class Documentation

6.6.3 Member Data Documentation

6.6.3.1 uint8_t BeepPin2::duration = 0 [static]

The counter used by the timer() function to time the duration of a tone played on speaker pin 2.

For details see BeepPin1::duration.

Definition at line 293 of file Arduboy2Beep.h.

The documentation for this class was generated from the following files:

• src/Arduboy2Beep.h
• src/Arduboy2Beep.cpp

6.7 Point Struct Reference

An object to define a single point for collision functions.

#include <Arduboy2.h>

Collaboration diagram for Point:

Point

+ x
+ y

+ Point()
+ Point()

Public Member Functions

• Point ()=default

The default constructor.

• Point (int16_t x, int16_t y)

The fully initializing constructor.

Public Attributes

• int16_t x
• int16_t y

Generated by Doxygen

6.7 Point Struct Reference 135

6.7.1 Detailed Description

An object to define a single point for collision functions.

The location of the point is given by X and Y coordinates.

See also

Arduboy2Base::collide(Point, Rect) Rect

Definition at line 140 of file Arduboy2.h.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 Point::Point (int16_t x, int16_t y)

The fully initializing constructor.

Parameters

x The X coordinate of the point. Copied to variable x.

y The Y coordinate of the point. Copied to variable y.

Definition at line 24 of file Arduboy2.cpp.

6.7.3 Member Data Documentation

6.7.3.1 int16_t Point::x

The X coordinate of the point

Definition at line 142 of file Arduboy2.h.

6.7.3.2 int16_t Point::y

The Y coordinate of the point

Definition at line 143 of file Arduboy2.h.

The documentation for this struct was generated from the following files:

• src/Arduboy2.h
• src/Arduboy2.cpp

Generated by Doxygen

136 Class Documentation

6.8 Print Class Reference

The Arduino Print class is available for writing text to the screen buffer.

#include <Arduboy2.h>

Inheritance diagram for Print:

Print

Arduboy2

cursor_x
cursor_y
textColor
textBackground
textSize
textWrap

+ Arduboy2()
+ bootLogoText()
+ bootLogoExtra()
+ write()
+ drawChar()
+ setCursor()
+ getCursorX()
+ getCursorY()
+ setTextColor()
+ getTextColor()
and 7 more...

Collaboration diagram for Print:

Print

Generated by Doxygen

6.9 Rect Struct Reference 137

6.8.1 Detailed Description

The Arduino Print class is available for writing text to the screen buffer.

For an Arduboy2 class object, functions provided by the Arduino Print class can be used to write text to the
screen buffer, in the same manner as the Arduino Serial.print(), etc., functions.

Print will use the write() function to actually draw each character in the screen buffer.

See: https://www.arduino.cc/en/Serial/Print

Example:

int value = 42;

arduboy.println("Hello World"); // Prints "Hello World" and then moves the
// text cursor to the start of the next line

arduboy.print(value); // Prints "42"
arduboy.print(’\n’); // Moves the text cursor to the start of the next line
arduboy.print(78, HEX) // Prints "4E" (78 in hexadecimal)

See also

Arduboy2::write()

The documentation for this class was generated from the following file:

• src/Arduboy2.h

6.9 Rect Struct Reference

A rectangle object for collision functions.

#include <Arduboy2.h>

Collaboration diagram for Rect:

Rect

+ x
+ y
+ width
+ height

+ Rect()
+ Rect()

Generated by Doxygen

https://www.arduino.cc/en/Serial/Print

138 Class Documentation

Public Member Functions

• Rect ()=default

The default constructor.

• Rect (int16_t x, int16_t y, uint8_t width, uint8_t height)

The fully initializing constructor.

Public Attributes

• int16_t x
• int16_t y
• uint8_t width
• uint8_t height

6.9.1 Detailed Description

A rectangle object for collision functions.

The X and Y coordinates specify the top left corner of a rectangle with the given width and height.

See also

Arduboy2Base::collide(Point, Rect) Arduboy2Base::collide(Rect, Rect) Point

Definition at line 105 of file Arduboy2.h.

6.9.2 Constructor & Destructor Documentation

6.9.2.1 Rect::Rect (int16_t x, int16_t y, uint8_t width, uint8_t height)

The fully initializing constructor.

Parameters

x The X coordinate of the top left corner. Copied to variable x.

y The Y coordinate of the top left corner. Copied to variable y.

width The width of the rectangle. Copied to variable width.

height The height of the rectangle. Copied to variable height.

Definition at line 15 of file Arduboy2.cpp.

6.9.3 Member Data Documentation

6.9.3.1 uint8_t Rect::height

The height of the rectangle

Definition at line 110 of file Arduboy2.h.

Generated by Doxygen

6.10 Sprites Class Reference 139

6.9.3.2 uint8_t Rect::width

The width of the rectangle

Definition at line 109 of file Arduboy2.h.

6.9.3.3 int16_t Rect::x

The X coordinate of the top left corner

Definition at line 107 of file Arduboy2.h.

6.9.3.4 int16_t Rect::y

The Y coordinate of the top left corner

Definition at line 108 of file Arduboy2.h.

The documentation for this struct was generated from the following files:

• src/Arduboy2.h
• src/Arduboy2.cpp

6.10 Sprites Class Reference

A class for drawing animated sprites from image and mask bitmaps.

#include <Sprites.h>

Collaboration diagram for Sprites:

Sprites

+ drawExternalMask()
+ drawPlusMask()
+ drawOverwrite()
+ drawErase()
+ drawSelfMasked()
+ draw()
+ drawBitmap()

Generated by Doxygen

140 Class Documentation

Static Public Member Functions

• static void drawExternalMask (int16_t x, int16_t y, const uint8_t ∗bitmap, const uint8_t ∗mask, uint8_t frame,
uint8_t mask_frame)

Draw a sprite using a separate image and mask array.
• static void drawPlusMask (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

Draw a sprite using an array containing both image and mask values.
• static void drawOverwrite (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

Draw a sprite by replacing the existing content completely.
• static void drawErase (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

"Erase" a sprite.
• static void drawSelfMasked (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

Draw a sprite using only the bits set to 1.

6.10.1 Detailed Description

A class for drawing animated sprites from image and mask bitmaps.

The functions in this class will draw to the screen buffer an image contained in an array located in program memory.
A mask can also be specified or implied, which dictates how existing pixels in the buffer, within the image boundaries,
will be affected.

A sprite or mask array contains one or more "frames". Each frame is intended to show whatever the sprite represents
in a different position, such as the various poses for a running or jumping character. By specifying a different frame
each time the sprite is drawn, it can be animated.

Each image array begins with values for the width and height of the sprite, in pixels. The width can be any value.
The height must be a multiple of 8 pixels, but with proper masking, a sprite of any height can be created.

For a separate mask array, as is used with drawExternalMask(), the width and height are not included but
must contain data of the same dimensions as the corresponding image array.

Following the width and height values for an image array, or from the beginning of a separate mask array, the array
contains the image and/or mask data for each frame. Each byte represents a vertical column of 8 pixels with the
least significant bit (bit 0) at the top. The bytes are drawn as 8 pixel high rows from left to right, top to bottom. When
the end of a row is reached, as specified by the width value, the next byte in the array will be the start of the next
row.

Data for each frame after the first one immediately follows the previous frame. Frame numbers start at 0.

Note

A separate SpritesB class is available as an alternative to this class. The only difference is that the
SpritesB class is optimized for small code size rather than for execution speed. One or the other can be
used depending on whether size or speed is more important.
Even if the speed is acceptable when using SpritesB, you should still try using Sprites. In some cases
Sprites will produce less code than SpritesB, notably when only one of the functions is used.
You can easily switch between using the Sprites class or the SpritesB class by using one or the other
to create an object instance:
Sprites sprites; // Use this to optimize for execution speed
SpritesB sprites; // Use this to (likely) optimize for code size

Note

In the example patterns given in each Sprites function description, a # character represents a bit set to 1 and
a - character represents a bit set to 0.

See also

SpritesB

Definition at line 75 of file Sprites.h.

Generated by Doxygen

6.10 Sprites Class Reference 141

6.10.2 Member Function Documentation

6.10.2.1 void Sprites::drawErase (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

"Erase" a sprite.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

frame The frame number of the image to erase.

The data from the specified frame in the array is used to erase a sprite. To "erase" a sprite, bits set to 1 in the frame
will set the corresponding pixel in the buffer to 0. Frame bits set to 0 will remain unchanged in the buffer.

image before after (# = 1, - = 0)

----- ----- -----
--#-- ----- -----
##-## ----- -----
--#-- ----- -----
----- ----- -----

image before after

----- ##### #####
--#-- ##### ##-##
##-## ##### --#--
--#-- ##### ##-##
----- ##### #####

Definition at line 20 of file Sprites.cpp.

6.10.2.2 void Sprites::drawExternalMask (int16_t x, int16_t y, const uint8_t ∗ bitmap, const uint8_t ∗ mask, uint8_t frame,
uint8_t mask_frame) [static]

Draw a sprite using a separate image and mask array.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

mask A pointer to the array containing the mask frames.

frame The frame number of the image to draw.

mask_frame The frame number for the mask to use (can be different from the image frame number).

An array containing the image frames, and another array containing corresponding mask frames, are used to draw
a sprite.

Bits set to 1 in the mask indicate that the pixel will be set to the value of the corresponding image bit. Bits set to 0
in the mask will be left unchanged.

image mask before after (# = 1, - = 0)

Generated by Doxygen

142 Class Documentation

----- -###- ----- -----
--#-- ##### ----- --#--
##-## ##-## ----- ##-##
--#-- ##### ----- --#--
----- -###- ----- -----

image mask before after

----- -###- ##### #---#
--#-- ##### ##### --#--
##-## ##### ##### ##-##
--#-- ##### ##### --#--
----- -###- ##### #---#

Definition at line 9 of file Sprites.cpp.

6.10.2.3 void Sprites::drawOverwrite (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

Draw a sprite by replacing the existing content completely.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

frame The frame number of the image to draw.

A sprite is drawn by overwriting the pixels in the buffer with the data from the specified frame in the array. No
masking is done. A bit set to 1 in the frame will set the pixel to 1 in the buffer, and a 0 in the array will set a 0 in the
buffer.

image before after (# = 1, - = 0)

----- ----- -----
--#-- ----- --#--
##-## ----- ##-##
--#-- ----- --#--
----- ----- -----

image before after

----- ##### -----
--#-- ##### --#--
##-## ##### ##-##
--#-- ##### --#--
----- ##### -----

Definition at line 15 of file Sprites.cpp.

6.10.2.4 void Sprites::drawPlusMask (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

Draw a sprite using an array containing both image and mask values.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image/mask frames.

frame The frame number of the image to draw.

Generated by Doxygen

6.10 Sprites Class Reference 143

An array containing combined image and mask data is used to draw a sprite. Bytes are given in pairs with the first
byte representing the image pixels and the second byte specifying the corresponding mask. The width given in the
array still specifies the image width, so each row of image and mask bytes will be twice the width value.

Bits set to 1 in the mask indicate that the pixel will be set to the value of the corresponding image bit. Bits set to 0
in the mask will be left unchanged.

image mask before after (# = 1, - = 0)

----- -###- ----- -----
--#-- ##### ----- --#--
##-## ##-## ----- ##-##
--#-- ##### ----- --#--
----- -###- ----- -----

image mask before after

----- -###- ##### #---#
--#-- ##### ##### --#--
##-## ##### ##### ##-##
--#-- ##### ##### --#--
----- -###- ##### #---#

Definition at line 30 of file Sprites.cpp.

6.10.2.5 void Sprites::drawSelfMasked (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

Draw a sprite using only the bits set to 1.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

frame The frame number of the image to draw.

Bits set to 1 in the frame will be used to draw the sprite by setting the corresponding pixel in the buffer to 1. Bits set
to 0 in the frame will remain unchanged in the buffer.

image before after (# = 1, - = 0)

----- ----- -----
--#-- ----- --#--
##-## ----- ##-##
--#-- ----- --#--
----- ----- -----

image before after

----- ##### ##### (no change because all pixels were
--#-- ##### ##### already white)
##-## ##### #####
--#-- ##### #####
----- ##### #####

Definition at line 25 of file Sprites.cpp.

The documentation for this class was generated from the following files:

• src/Sprites.h
• src/Sprites.cpp

Generated by Doxygen

144 Class Documentation

6.11 SpritesB Class Reference

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

#include <SpritesB.h>

Collaboration diagram for SpritesB:

SpritesB

+ drawExternalMask()
+ drawPlusMask()
+ drawOverwrite()
+ drawErase()
+ drawSelfMasked()
+ draw()
+ drawBitmap()

Static Public Member Functions

• static void drawExternalMask (int16_t x, int16_t y, const uint8_t ∗bitmap, const uint8_t ∗mask, uint8_t frame,
uint8_t mask_frame)

Draw a sprite using a separate image and mask array.
• static void drawPlusMask (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

Draw a sprite using an array containing both image and mask values.
• static void drawOverwrite (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

Draw a sprite by replacing the existing content completely.
• static void drawErase (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

"Erase" a sprite.
• static void drawSelfMasked (int16_t x, int16_t y, const uint8_t ∗bitmap, uint8_t frame)

Draw a sprite using only the bits set to 1.

6.11.1 Detailed Description

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

The functions in this class are identical to the Sprites class. The only difference is that the functions in this class
are optimized for smaller code size rather than execution speed.

See the Sprites class documentation for details on the use of the functions in this class.

Even if the speed is acceptable when using SpritesB, you should still try using Sprites. In some cases
Sprites will produce less code than SpritesB, notably when only one of the functions is used.

You can easily switch between using the Sprites class or the SpritesB class by using one or the other to
create an object instance:

Sprites sprites; // Use this to optimize for execution speed
SpritesB sprites; // Use this to (likely) optimize for code size

Generated by Doxygen

6.11 SpritesB Class Reference 145

See also

Sprites

Definition at line 40 of file SpritesB.h.

6.11.2 Member Function Documentation

6.11.2.1 void SpritesB::drawErase (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

"Erase" a sprite.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

frame The frame number of the image to erase.

See also

Sprites::drawErase()

Definition at line 21 of file SpritesB.cpp.

6.11.2.2 void SpritesB::drawExternalMask (int16_t x, int16_t y, const uint8_t ∗ bitmap, const uint8_t ∗ mask, uint8_t frame,
uint8_t mask_frame) [static]

Draw a sprite using a separate image and mask array.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

mask A pointer to the array containing the mask frames.

frame The frame number of the image to draw.

mask_frame The frame number for the mask to use (can be different from the image frame number).

See also

Sprites::drawExternalMask()

Definition at line 10 of file SpritesB.cpp.

6.11.2.3 void SpritesB::drawOverwrite (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

Draw a sprite by replacing the existing content completely.

Generated by Doxygen

146 Class Documentation

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

frame The frame number of the image to draw.

See also

Sprites::drawOverwrite()

Definition at line 16 of file SpritesB.cpp.

6.11.2.4 void SpritesB::drawPlusMask (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

Draw a sprite using an array containing both image and mask values.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image/mask frames.

frame The frame number of the image to draw.

See also

Sprites::drawPlusMask()

Definition at line 31 of file SpritesB.cpp.

6.11.2.5 void SpritesB::drawSelfMasked (int16_t x, int16_t y, const uint8_t ∗ bitmap, uint8_t frame) [static]

Draw a sprite using only the bits set to 1.

Parameters

x,y The coordinates of the top left pixel location.

bitmap A pointer to the array containing the image frames.

frame The frame number of the image to draw.

See also

Sprites::drawSelfMasked()

Definition at line 26 of file SpritesB.cpp.

The documentation for this class was generated from the following files:

• src/SpritesB.h
• src/SpritesB.cpp

Generated by Doxygen

Chapter 7

File Documentation

7.1 src/ab_logo.c File Reference

The ARDUBOY logo bitmap.

#include <avr/pgmspace.h>
Include dependency graph for ab_logo.c:

src/ab_logo.c

avr/pgmspace.h

This graph shows which files directly or indirectly include this file:

src/ab_logo.c

src/Arduboy2.cpp

148 File Documentation

7.1.1 Detailed Description

The ARDUBOY logo bitmap.

7.2 src/Arduboy2.cpp File Reference

The Arduboy2Base and Arduboy2 classes and support objects and definitions.

#include "Arduboy2.h"
#include "ab_logo.c"
#include "glcdfont.c"
Include dependency graph for Arduboy2.cpp:

src/Arduboy2.cpp

Arduboy2.h ab_logo.c glcdfont.c

Arduino.hEEPROM.h

Arduboy2Core.hArduboy2Beep.h Sprites.h SpritesB.h Print.h Arduboy2Audio.h

avr/power.h avr/sleep.hSpritesCommon.h

avr/pgmspace.h avr/io.h

7.2.1 Detailed Description

The Arduboy2Base and Arduboy2 classes and support objects and definitions.

7.3 src/Arduboy2.h File Reference

The Arduboy2Base and Arduboy2 classes and support objects and definitions.

#include <Arduino.h>
#include <EEPROM.h>
#include "Arduboy2Core.h"
#include "Arduboy2Beep.h"
#include "Sprites.h"
#include "SpritesB.h"
#include <Print.h>
#include "Arduboy2Audio.h"
Include dependency graph for Arduboy2.h:

src/Arduboy2.h

Arduino.h EEPROM.h

Arduboy2Core.h Arduboy2Beep.h Sprites.h SpritesB.hPrint.hArduboy2Audio.h

avr/power.h avr/sleep.h SpritesCommon.h

Generated by Doxygen

7.3 src/Arduboy2.h File Reference 149

This graph shows which files directly or indirectly include this file:

src/Arduboy2.h

src/Arduboy2.cpp src/Sprites.h src/SpritesB.h src/Arduboy2Audio.cpp

src/Sprites.cpp src/SpritesB.cpp

Classes

• struct Rect

A rectangle object for collision functions.

• struct Point

An object to define a single point for collision functions.

• class Arduboy2Base

The main functions provided for writing sketches for the Arduboy, minus text output.

• class Arduboy2

The main functions provided for writing sketches for the Arduboy, including text output.

Macros

• #define ARDUBOY_LIB_VER 50201

Library version.

• #define ARDUBOY_UNIT_NAME_LEN 6

• #define EEPROM_STORAGE_SPACE_START 16

Start of EEPROM storage space for sketches.

• #define BLACK 0

• #define WHITE 1

• #define INVERT 2

Color value to indicate pixels are to be inverted.

• #define CLEAR_BUFFER true

7.3.1 Detailed Description

The Arduboy2Base and Arduboy2 classes and support objects and definitions.

Generated by Doxygen

150 File Documentation

7.3.2 Macro Definition Documentation

7.3.2.1 #define ARDUBOY_LIB_VER 50201

Library version.

For a version number in the form of x.y.z the value of the define will be ((x ∗ 10000) + (y ∗ 100) + (z)) as a decimal
number. So, it will read as xxxyyzz, with no leading zeros on x.

A user program can test this value to conditionally compile based on the library version. For example:

// If the library is version 2.1.0 or higher
#if ARDUBOY_LIB_VER >= 20100

// ... code that make use of a new feature added to V2.1.0
#endif

Definition at line 36 of file Arduboy2.h.

7.3.2.2 #define ARDUBOY_UNIT_NAME_LEN 6

The maximum length of the unit name string.

Definition at line 39 of file Arduboy2.h.

7.3.2.3 #define BLACK 0

Color value for an unlit pixel for draw functions.

Definition at line 75 of file Arduboy2.h.

7.3.2.4 #define CLEAR_BUFFER true

Value to be passed to display() to clear the screen buffer.

Definition at line 88 of file Arduboy2.h.

7.3.2.5 #define EEPROM_STORAGE_SPACE_START 16

Start of EEPROM storage space for sketches.

An area at the start of EEPROM is reserved for system use. This define specifies the first EEPROM location past
the system area. Sketches can use locations from here to the end of EEPROM space.

Definition at line 65 of file Arduboy2.h.

Generated by Doxygen

7.4 src/Arduboy2Audio.cpp File Reference 151

7.3.2.6 #define INVERT 2

Color value to indicate pixels are to be inverted.

BLACK pixels will become WHITE and WHITE will become BLACK.

Note

Only function Arduboy2Base::drawBitmap() currently supports this value.

Definition at line 86 of file Arduboy2.h.

7.3.2.7 #define WHITE 1

Color value for a lit pixel for draw functions.

Definition at line 76 of file Arduboy2.h.

7.4 src/Arduboy2Audio.cpp File Reference

The Arduboy2Audio class for speaker and sound control.

#include "Arduboy2.h"
#include "Arduboy2Audio.h"
Include dependency graph for Arduboy2Audio.cpp:

src/Arduboy2Audio.cpp

Arduboy2.h

Arduboy2Audio.h

Arduino.h EEPROM.h

Arduboy2Core.h Arduboy2Beep.h Sprites.h SpritesB.hPrint.h

avr/power.h avr/sleep.h SpritesCommon.h

7.4.1 Detailed Description

The Arduboy2Audio class for speaker and sound control.

Generated by Doxygen

152 File Documentation

7.5 src/Arduboy2Audio.h File Reference

The Arduboy2Audio class for speaker and sound control.

#include <Arduino.h>
#include <EEPROM.h>
Include dependency graph for Arduboy2Audio.h:

src/Arduboy2Audio.h

Arduino.h EEPROM.h

This graph shows which files directly or indirectly include this file:

src/Arduboy2Audio.h

src/Arduboy2.h

src/Arduboy2Audio.cppsrc/Arduboy2.cpp src/Sprites.h src/SpritesB.h

src/Sprites.cpp src/SpritesB.cpp

Classes

• class Arduboy2Audio

Provide speaker and sound control.

7.5.1 Detailed Description

The Arduboy2Audio class for speaker and sound control.

Generated by Doxygen

7.6 src/Arduboy2Beep.cpp File Reference 153

7.6 src/Arduboy2Beep.cpp File Reference

Classes to generate simple square wave tones on the Arduboy speaker pins.

#include <Arduino.h>
#include "Arduboy2Beep.h"
Include dependency graph for Arduboy2Beep.cpp:

src/Arduboy2Beep.cpp

Arduino.h Arduboy2Beep.h

7.6.1 Detailed Description

Classes to generate simple square wave tones on the Arduboy speaker pins.

7.7 src/Arduboy2Beep.h File Reference

Classes to generate simple square wave tones on the Arduboy speaker pins.

This graph shows which files directly or indirectly include this file:

src/Arduboy2Beep.h

src/Arduboy2.h src/Arduboy2Beep.cpp

src/Arduboy2.cpp src/Sprites.h src/SpritesB.h src/Arduboy2Audio.cpp

src/Sprites.cpp src/SpritesB.cpp

Generated by Doxygen

154 File Documentation

Classes

• class BeepPin1

Play simple square wave tones using speaker pin 1.

• class BeepPin2

Play simple square wave tones using speaker pin 2.

7.7.1 Detailed Description

Classes to generate simple square wave tones on the Arduboy speaker pins.

7.8 src/Arduboy2Core.cpp File Reference

The Arduboy2Core class for Arduboy hardware initilization and control.

#include "Arduboy2Core.h"
#include <avr/wdt.h>
Include dependency graph for Arduboy2Core.cpp:

src/Arduboy2Core.cpp

Arduboy2Core.h avr/wdt.h

Arduino.h avr/power.h avr/sleep.h

7.8.1 Detailed Description

The Arduboy2Core class for Arduboy hardware initilization and control.

Generated by Doxygen

7.9 src/Arduboy2Core.h File Reference 155

7.9 src/Arduboy2Core.h File Reference

The Arduboy2Core class for Arduboy hardware initilization and control.

#include <Arduino.h>
#include <avr/power.h>
#include <avr/sleep.h>
Include dependency graph for Arduboy2Core.h:

src/Arduboy2Core.h

Arduino.h avr/power.h avr/sleep.h

This graph shows which files directly or indirectly include this file:

src/Arduboy2Core.h

src/Arduboy2.h src/Arduboy2Core.cpp

src/Arduboy2.cpp src/Sprites.h src/SpritesB.h src/Arduboy2Audio.cpp

src/Sprites.cpp src/SpritesB.cpp

Classes

• class Arduboy2Core

Lower level functions generally dealing directly with the hardware.

Macros

• #define RGB_ON LOW
• #define RGB_OFF HIGH
• #define RED_LED 10

Generated by Doxygen

156 File Documentation

• #define GREEN_LED 11

• #define BLUE_LED 9

• #define LEFT_BUTTON _BV(5)

• #define RIGHT_BUTTON _BV(6)

• #define UP_BUTTON _BV(7)

• #define DOWN_BUTTON _BV(4)

• #define A_BUTTON _BV(3)

• #define B_BUTTON _BV(2)

• #define PIN_SPEAKER_1 5

• #define PIN_SPEAKER_2 13

• #define WIDTH 128

• #define HEIGHT 64

• #define ARDUBOY_NO_USB

Eliminate the USB stack to free up code space.

7.9.1 Detailed Description

The Arduboy2Core class for Arduboy hardware initilization and control.

7.9.2 Macro Definition Documentation

7.9.2.1 #define A_BUTTON _BV(3)

The A button value for functions requiring a bitmask

Definition at line 71 of file Arduboy2Core.h.

7.9.2.2 #define ARDUBOY_NO_USB

Value:

int main() __attribute__ ((OS_main)); \
int main() { \
Arduboy2Core::mainNoUSB(); \
return 0; \

}

Eliminate the USB stack to free up code space.

Generated by Doxygen

7.9 src/Arduboy2Core.h File Reference 157

Note

WARNING: Removing the USB code will make it impossible for sketch uploader programs to automatically
force a reset into the bootloader! This means that a user will manually have to invoke a reset in order to upload
a new sketch, after one without USB has be been installed. Be aware that the timing for the point that a reset
must be initiated can be tricky, which could lead to some frustration on the user's part.

This macro will cause the USB code, normally included in the sketch as part of the standard Arduino environment,
to be eliminated. This will free up a fair amount of program space, and some RAM space as well, at the expense of
disabling all USB functionality within the sketch (except as power input).

The macro should be placed before the setup() function definition:

#include <Arduboy2.h>

Arduboy2 arduboy;

// (Other variable declarations, etc.)

// Eliminate the USB stack
ARDUBOY_NO_USB

void setup() {
arduboy.begin();
// any additional setup code

}

As stated in the warning above, without the USB code an uploader program will be unable to automatically force
a reset into the bootloader to upload a new sketch. The user will have to manually invoke a reset. In addition to
eliminating the USB code, this macro will check if the DOWN button is held when the sketch first starts and, if so, will
call exitToBootloader() to start the bootloader for uploading. This makes it easier for the user than having
to press the reset button.

However, to make it even more convenient for a user to invoke the bootloader it is highly recommended that a sketch
using this macro include a menu or prompt that allows the user to press the DOWN button within the sketch, which
should cause exitToBootloader() to be called.

At a minimum, the documentation for the sketch should clearly state that a manual reset will be required, and give
detailed instructions on what the user must do to upload a new sketch.

See also

Arduboy2Core::exitToBootloader()

Definition at line 310 of file Arduboy2Core.h.

7.9.2.3 #define B_BUTTON _BV(2)

The B button value for functions requiring a bitmask

Definition at line 72 of file Arduboy2Core.h.

7.9.2.4 #define BLUE_LED 9

The pin number for the blue color in the RGB LED.

Definition at line 54 of file Arduboy2Core.h.

Generated by Doxygen

158 File Documentation

7.9.2.5 #define DOWN_BUTTON _BV(4)

The Down button value for functions requiring a bitmask

Definition at line 70 of file Arduboy2Core.h.

7.9.2.6 #define GREEN_LED 11

The pin number for the greem color in the RGB LED.

Definition at line 53 of file Arduboy2Core.h.

7.9.2.7 #define HEIGHT 64

The height of the display in pixels

Definition at line 249 of file Arduboy2Core.h.

7.9.2.8 #define LEFT_BUTTON _BV(5)

The Left button value for functions requiring a bitmask

Definition at line 67 of file Arduboy2Core.h.

7.9.2.9 #define PIN_SPEAKER_1 5

The pin number of the first lead of the speaker

Definition at line 110 of file Arduboy2Core.h.

7.9.2.10 #define PIN_SPEAKER_2 13

The pin number of the second lead of the speaker

Definition at line 111 of file Arduboy2Core.h.

7.9.2.11 #define RED_LED 10

The pin number for the red color in the RGB LED.

Definition at line 52 of file Arduboy2Core.h.

7.9.2.12 #define RGB_OFF HIGH

For digitially setting an RGB LED off using digitalWriteRGB()

Definition at line 35 of file Arduboy2Core.h.

Generated by Doxygen

7.10 src/glcdfont.c File Reference 159

7.9.2.13 #define RGB_ON LOW

For digitially setting an RGB LED on using digitalWriteRGB()

Definition at line 34 of file Arduboy2Core.h.

7.9.2.14 #define RIGHT_BUTTON _BV(6)

The Right button value for functions requiring a bitmask

Definition at line 68 of file Arduboy2Core.h.

7.9.2.15 #define UP_BUTTON _BV(7)

The Up button value for functions requiring a bitmask

Definition at line 69 of file Arduboy2Core.h.

7.9.2.16 #define WIDTH 128

The width of the display in pixels

Definition at line 248 of file Arduboy2Core.h.

7.10 src/glcdfont.c File Reference

The font definitions used to display text characters.

#include <avr/io.h>
#include <avr/pgmspace.h>
Include dependency graph for glcdfont.c:

src/glcdfont.c

avr/io.h avr/pgmspace.h

Generated by Doxygen

160 File Documentation

This graph shows which files directly or indirectly include this file:

src/glcdfont.c

src/Arduboy2.cpp

7.10.1 Detailed Description

The font definitions used to display text characters.

7.11 src/Sprites.cpp File Reference

A class for drawing animated sprites from image and mask bitmaps.

#include "Sprites.h"
Include dependency graph for Sprites.cpp:

src/Sprites.cpp

Sprites.h

Arduboy2.h

SpritesCommon.hArduino.h EEPROM.h

Arduboy2Core.h Arduboy2Beep.h SpritesB.hPrint.hArduboy2Audio.h

avr/power.h avr/sleep.h

7.11.1 Detailed Description

A class for drawing animated sprites from image and mask bitmaps.

Generated by Doxygen

7.12 src/Sprites.h File Reference 161

7.12 src/Sprites.h File Reference

A class for drawing animated sprites from image and mask bitmaps.

#include "Arduboy2.h"
#include "SpritesCommon.h"
Include dependency graph for Sprites.h:

src/Sprites.h

Arduboy2.h

SpritesCommon.hArduino.h EEPROM.h

Arduboy2Core.h Arduboy2Beep.h SpritesB.hPrint.hArduboy2Audio.h

avr/power.h avr/sleep.h

This graph shows which files directly or indirectly include this file:

src/Sprites.h

src/Arduboy2.h src/Sprites.cpp

src/Arduboy2.cpp src/SpritesB.h src/Arduboy2Audio.cpp

src/SpritesB.cpp

Classes

• class Sprites

A class for drawing animated sprites from image and mask bitmaps.

7.12.1 Detailed Description

A class for drawing animated sprites from image and mask bitmaps.

Generated by Doxygen

162 File Documentation

7.13 src/SpritesB.cpp File Reference

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

#include "SpritesB.h"
Include dependency graph for SpritesB.cpp:

src/SpritesB.cpp

SpritesB.h

Arduboy2.h

SpritesCommon.hArduino.h EEPROM.h

Arduboy2Core.h Arduboy2Beep.h Sprites.hPrint.hArduboy2Audio.h

avr/power.h avr/sleep.h

7.13.1 Detailed Description

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

7.14 src/SpritesB.h File Reference

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

#include "Arduboy2.h"
#include "SpritesCommon.h"
Include dependency graph for SpritesB.h:

src/SpritesB.h

Arduboy2.h

SpritesCommon.hArduino.h EEPROM.h

Arduboy2Core.h Arduboy2Beep.h Sprites.hPrint.hArduboy2Audio.h

avr/power.h avr/sleep.h

Generated by Doxygen

7.15 src/SpritesCommon.h File Reference 163

This graph shows which files directly or indirectly include this file:

src/SpritesB.h

src/Arduboy2.h src/SpritesB.cpp

src/Arduboy2.cpp src/Sprites.h src/Arduboy2Audio.cpp

src/Sprites.cpp

Classes

• class SpritesB

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

7.14.1 Detailed Description

A class for drawing animated sprites from image and mask bitmaps. Optimized for small code size.

7.15 src/SpritesCommon.h File Reference

Common header file for sprite functions.

Generated by Doxygen

164 File Documentation

This graph shows which files directly or indirectly include this file:

src/SpritesCommon.h

src/Sprites.h

src/SpritesB.h

src/Arduboy2.h src/Sprites.cpp

src/Arduboy2.cpp src/Arduboy2Audio.cpp

src/SpritesB.cpp

7.15.1 Detailed Description

Common header file for sprite functions.

Generated by Doxygen

Index

A_BUTTON
Arduboy2Core.h, 156

ARDUBOY_LIB_VER
Arduboy2.h, 150

ARDUBOY_NO_USB
Arduboy2Core.h, 156

ARDUBOY_UNIT_NAME_LEN
Arduboy2.h, 150

allPixelsOn
Arduboy2, 28
Arduboy2Base, 77
Arduboy2Core, 114

Arduboy2, 21
allPixelsOn, 28
audio, 66
begin, 28
blank, 29
boot, 29
bootLogo, 29
bootLogoCompressed, 30
bootLogoExtra, 30
bootLogoShell, 30
bootLogoSpritesBOverwrite, 31
bootLogoSpritesBSelfMasked, 31
bootLogoSpritesOverwrite, 32
bootLogoSpritesSelfMasked, 32
bootLogoText, 32
buttonsState, 32
collide, 33
cpuLoad, 34
delayShort, 34
digitalWriteRGB, 35
display, 36
displayOff, 36
displayOn, 37
drawBitmap, 37
drawChar, 38
drawCircle, 38
drawCompressed, 38
drawFastHLine, 39
drawFastVLine, 39
drawLine, 39
drawPixel, 40
drawRect, 40
drawRoundRect, 40
drawSlowXYBitmap, 41
drawTriangle, 41
everyXFrames, 42
exitToBootloader, 42

fillCircle, 42
fillRect, 43
fillRoundRect, 43
fillScreen, 43
fillTriangle, 44
flashlight, 44
flipHorizontal, 44
flipVertical, 45
frameCount, 66
freeRGBled, 45
generateRandomSeed, 45
getBuffer, 46
getCursorX, 46
getCursorY, 46
getPixel, 47
getTextBackground, 47
getTextColor, 47
getTextSize, 48
getTextWrap, 48
height, 48
idle, 49
initRandomSeed, 49
invert, 49
justPressed, 50
justReleased, 50
LCDCommandMode, 51
LCDDataMode, 51
nextFrame, 51
nextFrameDEV, 52
notPressed, 52
paint8Pixels, 53
paintScreen, 53, 54
pollButtons, 54
pressed, 55
readShowBootLogoFlag, 55
readShowBootLogoLEDsFlag, 55
readShowUnitNameFlag, 56
readUnitID, 56
readUnitName, 56
sBuffer, 66
SPItransfer, 62
safeMode, 57
sendLCDCommand, 57
setCursor, 58
setFrameDuration, 58
setFrameRate, 59
setRGBled, 59, 60
setTextBackground, 60
setTextColor, 60

166 INDEX

setTextSize, 61
setTextWrap, 61
systemButtons, 62
waitNoButtons, 62
width, 62
write, 63
writeShowBootLogoFlag, 63
writeShowBootLogoLEDsFlag, 64
writeShowUnitNameFlag, 64
writeUnitID, 64
writeUnitName, 65

Arduboy2.h
ARDUBOY_LIB_VER, 150
ARDUBOY_UNIT_NAME_LEN, 150
BLACK, 150
CLEAR_BUFFER, 150
EEPROM_STORAGE_SPACE_START, 150
INVERT, 150
WHITE, 151

Arduboy2Audio, 67
begin, 68
enabled, 68
off, 69
on, 69
saveOnOff, 69
toggle, 70

Arduboy2Base, 70
allPixelsOn, 77
audio, 110
begin, 77
blank, 77
boot, 77
bootLogo, 78
bootLogoCompressed, 78
bootLogoShell, 78
bootLogoSpritesBOverwrite, 79
bootLogoSpritesBSelfMasked, 79
bootLogoSpritesOverwrite, 80
bootLogoSpritesSelfMasked, 80
buttonsState, 80
clear, 80
collide, 81
cpuLoad, 82
delayShort, 82
digitalWriteRGB, 82, 83
display, 84
displayOff, 84
displayOn, 84
drawBitmap, 85
drawCircle, 85
drawCompressed, 86
drawFastHLine, 86
drawFastVLine, 86
drawLine, 87
drawPixel, 87
drawRect, 87
drawRoundRect, 87
drawSlowXYBitmap, 88

drawTriangle, 88
everyXFrames, 89
exitToBootloader, 89
fillCircle, 89
fillRect, 90
fillRoundRect, 90
fillScreen, 90
fillTriangle, 91
flashlight, 91
flipHorizontal, 91
flipVertical, 92
frameCount, 110
freeRGBled, 92
generateRandomSeed, 92
getBuffer, 93
getPixel, 93
height, 94
idle, 94
initRandomSeed, 94
invert, 94
justPressed, 95
justReleased, 95
LCDCommandMode, 96
LCDDataMode, 96
nextFrame, 97
nextFrameDEV, 97
notPressed, 98
paint8Pixels, 98
paintScreen, 100
pollButtons, 101
pressed, 101
readShowBootLogoFlag, 102
readShowBootLogoLEDsFlag, 102
readShowUnitNameFlag, 102
readUnitID, 103
readUnitName, 103
sBuffer, 111
SPItransfer, 107
safeMode, 104
sendLCDCommand, 104
setFrameDuration, 105
setFrameRate, 105
setRGBled, 106
systemButtons, 107
waitNoButtons, 107
width, 108
writeShowBootLogoFlag, 108
writeShowBootLogoLEDsFlag, 108
writeShowUnitNameFlag, 109
writeUnitID, 109
writeUnitName, 110

Arduboy2Core, 112
allPixelsOn, 114
blank, 115
boot, 115
buttonsState, 115
delayShort, 116
digitalWriteRGB, 117

Generated by Doxygen

INDEX 167

displayOff, 118
displayOn, 118
exitToBootloader, 118
flipHorizontal, 119
flipVertical, 119
freeRGBled, 120
height, 120
idle, 120
invert, 120
LCDCommandMode, 121
LCDDataMode, 121
paint8Pixels, 121
paintScreen, 122
SPItransfer, 125
safeMode, 123
sendLCDCommand, 123
setRGBled, 124
width, 125

Arduboy2Core.h
A_BUTTON, 156
ARDUBOY_NO_USB, 156
B_BUTTON, 157
BLUE_LED, 157
DOWN_BUTTON, 157
GREEN_LED, 158
HEIGHT, 158
LEFT_BUTTON, 158
PIN_SPEAKER_1, 158
PIN_SPEAKER_2, 158
RED_LED, 158
RGB_OFF, 158
RGB_ON, 158
RIGHT_BUTTON, 159
UP_BUTTON, 159
WIDTH, 159

audio
Arduboy2, 66
Arduboy2Base, 110

B_BUTTON
Arduboy2Core.h, 157

BLACK
Arduboy2.h, 150

BLUE_LED
Arduboy2Core.h, 157

BeepPin1, 126
begin, 128
duration, 130
freq, 128
noTone, 129
timer, 129
tone, 129, 130

BeepPin2, 131
begin, 132
duration, 134
freq, 132
noTone, 133
timer, 133
tone, 133

begin
Arduboy2, 28
Arduboy2Audio, 68
Arduboy2Base, 77
BeepPin1, 128
BeepPin2, 132

blank
Arduboy2, 29
Arduboy2Base, 77
Arduboy2Core, 115

boot
Arduboy2, 29
Arduboy2Base, 77
Arduboy2Core, 115

bootLogo
Arduboy2, 29
Arduboy2Base, 78

bootLogoCompressed
Arduboy2, 30
Arduboy2Base, 78

bootLogoExtra
Arduboy2, 30

bootLogoShell
Arduboy2, 30
Arduboy2Base, 78

bootLogoSpritesBOverwrite
Arduboy2, 31
Arduboy2Base, 79

bootLogoSpritesBSelfMasked
Arduboy2, 31
Arduboy2Base, 79

bootLogoSpritesOverwrite
Arduboy2, 32
Arduboy2Base, 80

bootLogoSpritesSelfMasked
Arduboy2, 32
Arduboy2Base, 80

bootLogoText
Arduboy2, 32

buttonsState
Arduboy2, 32
Arduboy2Base, 80
Arduboy2Core, 115

CLEAR_BUFFER
Arduboy2.h, 150

clear
Arduboy2Base, 80

collide
Arduboy2, 33
Arduboy2Base, 81

cpuLoad
Arduboy2, 34
Arduboy2Base, 82

DOWN_BUTTON
Arduboy2Core.h, 157

delayShort
Arduboy2, 34

Generated by Doxygen

168 INDEX

Arduboy2Base, 82
Arduboy2Core, 116

digitalWriteRGB
Arduboy2, 35
Arduboy2Base, 82, 83
Arduboy2Core, 117

display
Arduboy2, 36
Arduboy2Base, 84

displayOff
Arduboy2, 36
Arduboy2Base, 84
Arduboy2Core, 118

displayOn
Arduboy2, 37
Arduboy2Base, 84
Arduboy2Core, 118

drawBitmap
Arduboy2, 37
Arduboy2Base, 85

drawChar
Arduboy2, 38

drawCircle
Arduboy2, 38
Arduboy2Base, 85

drawCompressed
Arduboy2, 38
Arduboy2Base, 86

drawErase
Sprites, 141
SpritesB, 145

drawExternalMask
Sprites, 141
SpritesB, 145

drawFastHLine
Arduboy2, 39
Arduboy2Base, 86

drawFastVLine
Arduboy2, 39
Arduboy2Base, 86

drawLine
Arduboy2, 39
Arduboy2Base, 87

drawOverwrite
Sprites, 142
SpritesB, 145

drawPixel
Arduboy2, 40
Arduboy2Base, 87

drawPlusMask
Sprites, 142
SpritesB, 146

drawRect
Arduboy2, 40
Arduboy2Base, 87

drawRoundRect
Arduboy2, 40
Arduboy2Base, 87

drawSelfMasked
Sprites, 143
SpritesB, 146

drawSlowXYBitmap
Arduboy2, 41
Arduboy2Base, 88

drawTriangle
Arduboy2, 41
Arduboy2Base, 88

duration
BeepPin1, 130
BeepPin2, 134

EEPROM_STORAGE_SPACE_START
Arduboy2.h, 150

enabled
Arduboy2Audio, 68

everyXFrames
Arduboy2, 42
Arduboy2Base, 89

exitToBootloader
Arduboy2, 42
Arduboy2Base, 89
Arduboy2Core, 118

fillCircle
Arduboy2, 42
Arduboy2Base, 89

fillRect
Arduboy2, 43
Arduboy2Base, 90

fillRoundRect
Arduboy2, 43
Arduboy2Base, 90

fillScreen
Arduboy2, 43
Arduboy2Base, 90

fillTriangle
Arduboy2, 44
Arduboy2Base, 91

flashlight
Arduboy2, 44
Arduboy2Base, 91

flipHorizontal
Arduboy2, 44
Arduboy2Base, 91
Arduboy2Core, 119

flipVertical
Arduboy2, 45
Arduboy2Base, 92
Arduboy2Core, 119

frameCount
Arduboy2, 66
Arduboy2Base, 110

freeRGBled
Arduboy2, 45
Arduboy2Base, 92
Arduboy2Core, 120

freq

Generated by Doxygen

INDEX 169

BeepPin1, 128
BeepPin2, 132

GREEN_LED
Arduboy2Core.h, 158

generateRandomSeed
Arduboy2, 45
Arduboy2Base, 92

getBuffer
Arduboy2, 46
Arduboy2Base, 93

getCursorX
Arduboy2, 46

getCursorY
Arduboy2, 46

getPixel
Arduboy2, 47
Arduboy2Base, 93

getTextBackground
Arduboy2, 47

getTextColor
Arduboy2, 47

getTextSize
Arduboy2, 48

getTextWrap
Arduboy2, 48

HEIGHT
Arduboy2Core.h, 158

height
Arduboy2, 48
Arduboy2Base, 94
Arduboy2Core, 120
Rect, 138

INVERT
Arduboy2.h, 150

idle
Arduboy2, 49
Arduboy2Base, 94
Arduboy2Core, 120

initRandomSeed
Arduboy2, 49
Arduboy2Base, 94

invert
Arduboy2, 49
Arduboy2Base, 94
Arduboy2Core, 120

justPressed
Arduboy2, 50
Arduboy2Base, 95

justReleased
Arduboy2, 50
Arduboy2Base, 95

LCDCommandMode
Arduboy2, 51
Arduboy2Base, 96

Arduboy2Core, 121
LCDDataMode

Arduboy2, 51
Arduboy2Base, 96
Arduboy2Core, 121

LEFT_BUTTON
Arduboy2Core.h, 158

nextFrame
Arduboy2, 51
Arduboy2Base, 97

nextFrameDEV
Arduboy2, 52
Arduboy2Base, 97

noTone
BeepPin1, 129
BeepPin2, 133

notPressed
Arduboy2, 52
Arduboy2Base, 98

off
Arduboy2Audio, 69

on
Arduboy2Audio, 69

PIN_SPEAKER_1
Arduboy2Core.h, 158

PIN_SPEAKER_2
Arduboy2Core.h, 158

paint8Pixels
Arduboy2, 53
Arduboy2Base, 98
Arduboy2Core, 121

paintScreen
Arduboy2, 53, 54
Arduboy2Base, 100
Arduboy2Core, 122

Point, 134
Point, 135
x, 135
y, 135

pollButtons
Arduboy2, 54
Arduboy2Base, 101

pressed
Arduboy2, 55
Arduboy2Base, 101

Print, 136

RED_LED
Arduboy2Core.h, 158

RGB_OFF
Arduboy2Core.h, 158

RGB_ON
Arduboy2Core.h, 158

RIGHT_BUTTON
Arduboy2Core.h, 159

readShowBootLogoFlag

Generated by Doxygen

170 INDEX

Arduboy2, 55
Arduboy2Base, 102

readShowBootLogoLEDsFlag
Arduboy2, 55
Arduboy2Base, 102

readShowUnitNameFlag
Arduboy2, 56
Arduboy2Base, 102

readUnitID
Arduboy2, 56
Arduboy2Base, 103

readUnitName
Arduboy2, 56
Arduboy2Base, 103

Rect, 137
height, 138
Rect, 138
width, 138
x, 139
y, 139

sBuffer
Arduboy2, 66
Arduboy2Base, 111

SPItransfer
Arduboy2, 62
Arduboy2Base, 107
Arduboy2Core, 125

safeMode
Arduboy2, 57
Arduboy2Base, 104
Arduboy2Core, 123

saveOnOff
Arduboy2Audio, 69

sendLCDCommand
Arduboy2, 57
Arduboy2Base, 104
Arduboy2Core, 123

setCursor
Arduboy2, 58

setFrameDuration
Arduboy2, 58
Arduboy2Base, 105

setFrameRate
Arduboy2, 59
Arduboy2Base, 105

setRGBled
Arduboy2, 59, 60
Arduboy2Base, 106
Arduboy2Core, 124

setTextBackground
Arduboy2, 60

setTextColor
Arduboy2, 60

setTextSize
Arduboy2, 61

setTextWrap
Arduboy2, 61

Sprites, 139

drawErase, 141
drawExternalMask, 141
drawOverwrite, 142
drawPlusMask, 142
drawSelfMasked, 143

SpritesB, 144
drawErase, 145
drawExternalMask, 145
drawOverwrite, 145
drawPlusMask, 146
drawSelfMasked, 146

src/Arduboy2.cpp, 148
src/Arduboy2.h, 148
src/Arduboy2Audio.cpp, 151
src/Arduboy2Audio.h, 152
src/Arduboy2Beep.cpp, 153
src/Arduboy2Beep.h, 153
src/Arduboy2Core.cpp, 154
src/Arduboy2Core.h, 155
src/Sprites.cpp, 160
src/Sprites.h, 161
src/SpritesB.cpp, 162
src/SpritesB.h, 162
src/SpritesCommon.h, 163
src/ab_logo.c, 147
src/glcdfont.c, 159
systemButtons

Arduboy2, 62
Arduboy2Base, 107

timer
BeepPin1, 129
BeepPin2, 133

toggle
Arduboy2Audio, 70

tone
BeepPin1, 129, 130
BeepPin2, 133

UP_BUTTON
Arduboy2Core.h, 159

WHITE
Arduboy2.h, 151

WIDTH
Arduboy2Core.h, 159

waitNoButtons
Arduboy2, 62
Arduboy2Base, 107

width
Arduboy2, 62
Arduboy2Base, 108
Arduboy2Core, 125
Rect, 138

write
Arduboy2, 63

writeShowBootLogoFlag
Arduboy2, 63
Arduboy2Base, 108

Generated by Doxygen

INDEX 171

writeShowBootLogoLEDsFlag
Arduboy2, 64
Arduboy2Base, 108

writeShowUnitNameFlag
Arduboy2, 64
Arduboy2Base, 109

writeUnitID
Arduboy2, 64
Arduboy2Base, 109

writeUnitName
Arduboy2, 65
Arduboy2Base, 110

x
Point, 135
Rect, 139

y
Point, 135
Rect, 139

Generated by Doxygen

	1 Arduboy2 Library
	2 Software License Agreements
	3 Hierarchical Index
	3.1 Class Hierarchy

	4 Class Index
	4.1 Class List

	5 File Index
	5.1 File List

	6 Class Documentation
	6.1 Arduboy2 Class Reference
	6.1.1 Detailed Description
	6.1.2 Member Function Documentation
	6.1.2.1 allPixelsOn(bool on)
	6.1.2.2 begin()
	6.1.2.3 blank()
	6.1.2.4 boot()
	6.1.2.5 bootLogo()
	6.1.2.6 bootLogoCompressed()
	6.1.2.7 bootLogoExtra()
	6.1.2.8 bootLogoShell(void(*drawLogo)(int16t))
	6.1.2.9 bootLogoSpritesBOverwrite()
	6.1.2.10 bootLogoSpritesBSelfMasked()
	6.1.2.11 bootLogoSpritesOverwrite()
	6.1.2.12 bootLogoSpritesSelfMasked()
	6.1.2.13 bootLogoText()
	6.1.2.14 buttonsState()
	6.1.2.15 collide(Point point, Rect rect)
	6.1.2.16 collide(Rect rect1, Rect rect2)
	6.1.2.17 cpuLoad()
	6.1.2.18 delayShort(uint16t ms) attribute((noinline))
	6.1.2.19 digitalWriteRGB(uint8t red, uint8t green, uint8t blue)
	6.1.2.20 digitalWriteRGB(uint8t color, uint8t val)
	6.1.2.21 display()
	6.1.2.22 display(bool clear)
	6.1.2.23 displayOff()
	6.1.2.24 displayOn()
	6.1.2.25 drawBitmap(int16t x, int16t y, const uint8t *bitmap, uint8t w, uint8t h, uint8t color=WHITE)
	6.1.2.26 drawChar(int16t x, int16t y, unsigned char c, uint8t color, uint8t bg, uint8t size)
	6.1.2.27 drawCircle(int16t x0, int16t y0, uint8t r, uint8t color=WHITE)
	6.1.2.28 drawCompressed(int16t sx, int16t sy, const uint8t *bitmap, uint8t color=WHITE)
	6.1.2.29 drawFastHLine(int16t x, int16t y, uint8t w, uint8t color=WHITE)
	6.1.2.30 drawFastVLine(int16t x, int16t y, uint8t h, uint8t color=WHITE)
	6.1.2.31 drawLine(int16t x0, int16t y0, int16t x1, int16t y1, uint8t color=WHITE)
	6.1.2.32 drawPixel(int16t x, int16t y, uint8t color=WHITE)
	6.1.2.33 drawRect(int16t x, int16t y, uint8t w, uint8t h, uint8t color=WHITE)
	6.1.2.34 drawRoundRect(int16t x, int16t y, uint8t w, uint8t h, uint8t r, uint8t color=WHITE)
	6.1.2.35 drawSlowXYBitmap(int16t x, int16t y, const uint8t *bitmap, uint8t w, uint8t h, uint8t color=WHITE)
	6.1.2.36 drawTriangle(int16t x0, int16t y0, int16t x1, int16t y1, int16t x2, int16t y2, uint8t color=WHITE)
	6.1.2.37 everyXFrames(uint8t frames)
	6.1.2.38 exitToBootloader()
	6.1.2.39 fillCircle(int16t x0, int16t y0, uint8t r, uint8t color=WHITE)
	6.1.2.40 fillRect(int16t x, int16t y, uint8t w, uint8t h, uint8t color=WHITE)
	6.1.2.41 fillRoundRect(int16t x, int16t y, uint8t w, uint8t h, uint8t r, uint8t color=WHITE)
	6.1.2.42 fillScreen(uint8t color=WHITE)
	6.1.2.43 fillTriangle(int16t x0, int16t y0, int16t x1, int16t y1, int16t x2, int16t y2, uint8t color=WHITE)
	6.1.2.44 flashlight()
	6.1.2.45 flipHorizontal(bool flipped)
	6.1.2.46 flipVertical(bool flipped)
	6.1.2.47 freeRGBled()
	6.1.2.48 generateRandomSeed()
	6.1.2.49 getBuffer()
	6.1.2.50 getCursorX()
	6.1.2.51 getCursorY()
	6.1.2.52 getPixel(uint8t x, uint8t y)
	6.1.2.53 getTextBackground()
	6.1.2.54 getTextColor()
	6.1.2.55 getTextSize()
	6.1.2.56 getTextWrap()
	6.1.2.57 height()
	6.1.2.58 idle()
	6.1.2.59 initRandomSeed()
	6.1.2.60 invert(bool inverse)
	6.1.2.61 justPressed(uint8t button)
	6.1.2.62 justReleased(uint8t button)
	6.1.2.63 LCDCommandMode()
	6.1.2.64 LCDDataMode()
	6.1.2.65 nextFrame()
	6.1.2.66 nextFrameDEV()
	6.1.2.67 notPressed(uint8t buttons)
	6.1.2.68 paint8Pixels(uint8t pixels)
	6.1.2.69 paintScreen(const uint8t *image)
	6.1.2.70 paintScreen(uint8t image[], bool clear=false)
	6.1.2.71 pollButtons()
	6.1.2.72 pressed(uint8t buttons)
	6.1.2.73 readShowBootLogoFlag()
	6.1.2.74 readShowBootLogoLEDsFlag()
	6.1.2.75 readShowUnitNameFlag()
	6.1.2.76 readUnitID()
	6.1.2.77 readUnitName(char *name)
	6.1.2.78 safeMode()
	6.1.2.79 sendLCDCommand(uint8t command)
	6.1.2.80 setCursor(int16t x, int16t y)
	6.1.2.81 setFrameDuration(uint8t duration)
	6.1.2.82 setFrameRate(uint8t rate)
	6.1.2.83 setRGBled(uint8t red, uint8t green, uint8t blue)
	6.1.2.84 setRGBled(uint8t color, uint8t val)
	6.1.2.85 setTextBackground(uint8t bg)
	6.1.2.86 setTextColor(uint8t color)
	6.1.2.87 setTextSize(uint8t s)
	6.1.2.88 setTextWrap(bool w)
	6.1.2.89 SPItransfer(uint8t data)
	6.1.2.90 systemButtons()
	6.1.2.91 waitNoButtons()
	6.1.2.92 width()
	6.1.2.93 write(uint8t)
	6.1.2.94 writeShowBootLogoFlag(bool val)
	6.1.2.95 writeShowBootLogoLEDsFlag(bool val)
	6.1.2.96 writeShowUnitNameFlag(bool val)
	6.1.2.97 writeUnitID(uint16t id)
	6.1.2.98 writeUnitName(char *name)

	6.1.3 Member Data Documentation
	6.1.3.1 audio
	6.1.3.2 frameCount
	6.1.3.3 sBuffer

	6.2 Arduboy2Audio Class Reference
	6.2.1 Detailed Description
	6.2.2 Member Function Documentation
	6.2.2.1 begin()
	6.2.2.2 enabled()
	6.2.2.3 off()
	6.2.2.4 on()
	6.2.2.5 saveOnOff()
	6.2.2.6 toggle()

	6.3 Arduboy2Base Class Reference
	6.3.1 Detailed Description
	6.3.2 Member Function Documentation
	6.3.2.1 allPixelsOn(bool on)
	6.3.2.2 begin()
	6.3.2.3 blank()
	6.3.2.4 boot()
	6.3.2.5 bootLogo()
	6.3.2.6 bootLogoCompressed()
	6.3.2.7 bootLogoShell(void(*drawLogo)(int16t))
	6.3.2.8 bootLogoSpritesBOverwrite()
	6.3.2.9 bootLogoSpritesBSelfMasked()
	6.3.2.10 bootLogoSpritesOverwrite()
	6.3.2.11 bootLogoSpritesSelfMasked()
	6.3.2.12 buttonsState()
	6.3.2.13 clear()
	6.3.2.14 collide(Point point, Rect rect)
	6.3.2.15 collide(Rect rect1, Rect rect2)
	6.3.2.16 cpuLoad()
	6.3.2.17 delayShort(uint16t ms) attribute((noinline))
	6.3.2.18 digitalWriteRGB(uint8t red, uint8t green, uint8t blue)
	6.3.2.19 digitalWriteRGB(uint8t color, uint8t val)
	6.3.2.20 display()
	6.3.2.21 display(bool clear)
	6.3.2.22 displayOff()
	6.3.2.23 displayOn()
	6.3.2.24 drawBitmap(int16t x, int16t y, const uint8t *bitmap, uint8t w, uint8t h, uint8t color=WHITE)
	6.3.2.25 drawCircle(int16t x0, int16t y0, uint8t r, uint8t color=WHITE)
	6.3.2.26 drawCompressed(int16t sx, int16t sy, const uint8t *bitmap, uint8t color=WHITE)
	6.3.2.27 drawFastHLine(int16t x, int16t y, uint8t w, uint8t color=WHITE)
	6.3.2.28 drawFastVLine(int16t x, int16t y, uint8t h, uint8t color=WHITE)
	6.3.2.29 drawLine(int16t x0, int16t y0, int16t x1, int16t y1, uint8t color=WHITE)
	6.3.2.30 drawPixel(int16t x, int16t y, uint8t color=WHITE)
	6.3.2.31 drawRect(int16t x, int16t y, uint8t w, uint8t h, uint8t color=WHITE)
	6.3.2.32 drawRoundRect(int16t x, int16t y, uint8t w, uint8t h, uint8t r, uint8t color=WHITE)
	6.3.2.33 drawSlowXYBitmap(int16t x, int16t y, const uint8t *bitmap, uint8t w, uint8t h, uint8t color=WHITE)
	6.3.2.34 drawTriangle(int16t x0, int16t y0, int16t x1, int16t y1, int16t x2, int16t y2, uint8t color=WHITE)
	6.3.2.35 everyXFrames(uint8t frames)
	6.3.2.36 exitToBootloader()
	6.3.2.37 fillCircle(int16t x0, int16t y0, uint8t r, uint8t color=WHITE)
	6.3.2.38 fillRect(int16t x, int16t y, uint8t w, uint8t h, uint8t color=WHITE)
	6.3.2.39 fillRoundRect(int16t x, int16t y, uint8t w, uint8t h, uint8t r, uint8t color=WHITE)
	6.3.2.40 fillScreen(uint8t color=WHITE)
	6.3.2.41 fillTriangle(int16t x0, int16t y0, int16t x1, int16t y1, int16t x2, int16t y2, uint8t color=WHITE)
	6.3.2.42 flashlight()
	6.3.2.43 flipHorizontal(bool flipped)
	6.3.2.44 flipVertical(bool flipped)
	6.3.2.45 freeRGBled()
	6.3.2.46 generateRandomSeed()
	6.3.2.47 getBuffer()
	6.3.2.48 getPixel(uint8t x, uint8t y)
	6.3.2.49 height()
	6.3.2.50 idle()
	6.3.2.51 initRandomSeed()
	6.3.2.52 invert(bool inverse)
	6.3.2.53 justPressed(uint8t button)
	6.3.2.54 justReleased(uint8t button)
	6.3.2.55 LCDCommandMode()
	6.3.2.56 LCDDataMode()
	6.3.2.57 nextFrame()
	6.3.2.58 nextFrameDEV()
	6.3.2.59 notPressed(uint8t buttons)
	6.3.2.60 paint8Pixels(uint8t pixels)
	6.3.2.61 paintScreen(const uint8t *image)
	6.3.2.62 paintScreen(uint8t image[], bool clear=false)
	6.3.2.63 pollButtons()
	6.3.2.64 pressed(uint8t buttons)
	6.3.2.65 readShowBootLogoFlag()
	6.3.2.66 readShowBootLogoLEDsFlag()
	6.3.2.67 readShowUnitNameFlag()
	6.3.2.68 readUnitID()
	6.3.2.69 readUnitName(char *name)
	6.3.2.70 safeMode()
	6.3.2.71 sendLCDCommand(uint8t command)
	6.3.2.72 setFrameDuration(uint8t duration)
	6.3.2.73 setFrameRate(uint8t rate)
	6.3.2.74 setRGBled(uint8t red, uint8t green, uint8t blue)
	6.3.2.75 setRGBled(uint8t color, uint8t val)
	6.3.2.76 SPItransfer(uint8t data)
	6.3.2.77 systemButtons()
	6.3.2.78 waitNoButtons()
	6.3.2.79 width()
	6.3.2.80 writeShowBootLogoFlag(bool val)
	6.3.2.81 writeShowBootLogoLEDsFlag(bool val)
	6.3.2.82 writeShowUnitNameFlag(bool val)
	6.3.2.83 writeUnitID(uint16t id)
	6.3.2.84 writeUnitName(char *name)

	6.3.3 Member Data Documentation
	6.3.3.1 audio
	6.3.3.2 frameCount
	6.3.3.3 sBuffer

	6.4 Arduboy2Core Class Reference
	6.4.1 Detailed Description
	6.4.2 Member Function Documentation
	6.4.2.1 allPixelsOn(bool on)
	6.4.2.2 blank()
	6.4.2.3 boot()
	6.4.2.4 buttonsState()
	6.4.2.5 delayShort(uint16t ms) attribute((noinline))
	6.4.2.6 digitalWriteRGB(uint8t red, uint8t green, uint8t blue)
	6.4.2.7 digitalWriteRGB(uint8t color, uint8t val)
	6.4.2.8 displayOff()
	6.4.2.9 displayOn()
	6.4.2.10 exitToBootloader()
	6.4.2.11 flipHorizontal(bool flipped)
	6.4.2.12 flipVertical(bool flipped)
	6.4.2.13 freeRGBled()
	6.4.2.14 height()
	6.4.2.15 idle()
	6.4.2.16 invert(bool inverse)
	6.4.2.17 LCDCommandMode()
	6.4.2.18 LCDDataMode()
	6.4.2.19 paint8Pixels(uint8t pixels)
	6.4.2.20 paintScreen(const uint8t *image)
	6.4.2.21 paintScreen(uint8t image[], bool clear=false)
	6.4.2.22 safeMode()
	6.4.2.23 sendLCDCommand(uint8t command)
	6.4.2.24 setRGBled(uint8t red, uint8t green, uint8t blue)
	6.4.2.25 setRGBled(uint8t color, uint8t val)
	6.4.2.26 SPItransfer(uint8t data)
	6.4.2.27 width()

	6.5 BeepPin1 Class Reference
	6.5.1 Detailed Description
	6.5.2 Member Function Documentation
	6.5.2.1 begin()
	6.5.2.2 freq(const float hz)
	6.5.2.3 noTone()
	6.5.2.4 timer()
	6.5.2.5 tone(uint16t count)
	6.5.2.6 tone(uint16t count, uint8t dur)

	6.5.3 Member Data Documentation
	6.5.3.1 duration

	6.6 BeepPin2 Class Reference
	6.6.1 Detailed Description
	6.6.2 Member Function Documentation
	6.6.2.1 begin()
	6.6.2.2 freq(const float hz)
	6.6.2.3 noTone()
	6.6.2.4 timer()
	6.6.2.5 tone(uint16t count)
	6.6.2.6 tone(uint16t count, uint8t dur)

	6.6.3 Member Data Documentation
	6.6.3.1 duration

	6.7 Point Struct Reference
	6.7.1 Detailed Description
	6.7.2 Constructor & Destructor Documentation
	6.7.2.1 Point(int16t x, int16t y)

	6.7.3 Member Data Documentation
	6.7.3.1 x
	6.7.3.2 y

	6.8 Print Class Reference
	6.8.1 Detailed Description

	6.9 Rect Struct Reference
	6.9.1 Detailed Description
	6.9.2 Constructor & Destructor Documentation
	6.9.2.1 Rect(int16t x, int16t y, uint8t width, uint8t height)

	6.9.3 Member Data Documentation
	6.9.3.1 height
	6.9.3.2 width
	6.9.3.3 x
	6.9.3.4 y

	6.10 Sprites Class Reference
	6.10.1 Detailed Description
	6.10.2 Member Function Documentation
	6.10.2.1 drawErase(int16t x, int16t y, const uint8t *bitmap, uint8t frame)
	6.10.2.2 drawExternalMask(int16t x, int16t y, const uint8t *bitmap, const uint8t *mask, uint8t frame, uint8t maskframe)
	6.10.2.3 drawOverwrite(int16t x, int16t y, const uint8t *bitmap, uint8t frame)
	6.10.2.4 drawPlusMask(int16t x, int16t y, const uint8t *bitmap, uint8t frame)
	6.10.2.5 drawSelfMasked(int16t x, int16t y, const uint8t *bitmap, uint8t frame)

	6.11 SpritesB Class Reference
	6.11.1 Detailed Description
	6.11.2 Member Function Documentation
	6.11.2.1 drawErase(int16t x, int16t y, const uint8t *bitmap, uint8t frame)
	6.11.2.2 drawExternalMask(int16t x, int16t y, const uint8t *bitmap, const uint8t *mask, uint8t frame, uint8t maskframe)
	6.11.2.3 drawOverwrite(int16t x, int16t y, const uint8t *bitmap, uint8t frame)
	6.11.2.4 drawPlusMask(int16t x, int16t y, const uint8t *bitmap, uint8t frame)
	6.11.2.5 drawSelfMasked(int16t x, int16t y, const uint8t *bitmap, uint8t frame)

	7 File Documentation
	7.1 src/ab_logo.c File Reference
	7.1.1 Detailed Description

	7.2 src/Arduboy2.cpp File Reference
	7.2.1 Detailed Description

	7.3 src/Arduboy2.h File Reference
	7.3.1 Detailed Description
	7.3.2 Macro Definition Documentation
	7.3.2.1 ARDUBOYLIBVER
	7.3.2.2 ARDUBOYUNITNAMELEN
	7.3.2.3 BLACK
	7.3.2.4 CLEARBUFFER
	7.3.2.5 EEPROMSTORAGESPACESTART
	7.3.2.6 INVERT
	7.3.2.7 WHITE

	7.4 src/Arduboy2Audio.cpp File Reference
	7.4.1 Detailed Description

	7.5 src/Arduboy2Audio.h File Reference
	7.5.1 Detailed Description

	7.6 src/Arduboy2Beep.cpp File Reference
	7.6.1 Detailed Description

	7.7 src/Arduboy2Beep.h File Reference
	7.7.1 Detailed Description

	7.8 src/Arduboy2Core.cpp File Reference
	7.8.1 Detailed Description

	7.9 src/Arduboy2Core.h File Reference
	7.9.1 Detailed Description
	7.9.2 Macro Definition Documentation
	7.9.2.1 ABUTTON
	7.9.2.2 ARDUBOYNOUSB
	7.9.2.3 BBUTTON
	7.9.2.4 BLUELED
	7.9.2.5 DOWNBUTTON
	7.9.2.6 GREENLED
	7.9.2.7 HEIGHT
	7.9.2.8 LEFTBUTTON
	7.9.2.9 PINSPEAKER1
	7.9.2.10 PINSPEAKER2
	7.9.2.11 REDLED
	7.9.2.12 RGBOFF
	7.9.2.13 RGBON
	7.9.2.14 RIGHTBUTTON
	7.9.2.15 UPBUTTON
	7.9.2.16 WIDTH

	7.10 src/glcdfont.c File Reference
	7.10.1 Detailed Description

	7.11 src/Sprites.cpp File Reference
	7.11.1 Detailed Description

	7.12 src/Sprites.h File Reference
	7.12.1 Detailed Description

	7.13 src/SpritesB.cpp File Reference
	7.13.1 Detailed Description

	7.14 src/SpritesB.h File Reference
	7.14.1 Detailed Description

	7.15 src/SpritesCommon.h File Reference
	7.15.1 Detailed Description

	Index

