TECHNICAL DATA

MQ-4 GAS SENSOR

FEATURES

- * High sensitivity to CH₄, Natural gas.
- * Small sensitivity to alcohol, smoke.
- * Simple drive circuit

APPLICATION

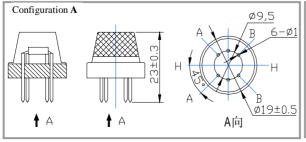
They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of CH₄,Natural gas.LNG, avoid the noise of alcohol and cooking fumes and cigarette smoke.

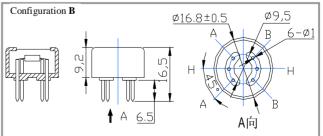
SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
V_{H}	Heating voltage	5V±0.1	ACOR DC
P_{L}	Load resistance	20K Ω	
R_{H}	Heater resistance	$33 \Omega \pm 5\%$	Room Tem
P_{H}	Heating consumption	less than 750mw	

B. Environment condition


Symbol	nbol Parameter name Technical		Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R_{H}	Related humidity	less than 95% Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%


C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Ramark 2
Rs	Sensing Resistance	10K Ω - 60K Ω	Detecting concentration
		(1000ppm CH ₄)	scope:
			200-10000ppm
α			CH ₄ , natural gas
(1000ppm/	Concentration slope rate	≤0.6	
5000ppm CH ₄)			
Standard	Temp: 20 $^{\circ}$ C ± 2 $^{\circ}$ C	Vc:5V±0.1	
detecting	Humidity: 65%±5%	Vh: 5V±0.1	
condition]
Preheat time	Over 24 h		

D. Strucyure and configuration, basic measuring circuit

	D .		57 ~1	A	
	Parts	Materials		$A \setminus B$	Г
1	Gas sensing	SnO_2		\times	
	layer		4 - 4	н((-)) н	Vc: L
2	Electrode	Au			AC or B A or B
3	Electrode line	Pt	3 3	B	DC 5V 4 Jg J Vout
4	Heater coil	Ni-Cr alloy		A I b	±0.1v Vout
5	Tubular ceramic	Al_2O_3	6	Н	
6	Anti-explosion	Stainless steel gauze		["	H ├─ RL
	network	(SUS316 100-mesh)	\{ \(\sum_{\text{\tin}\\ \text{\tin}}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex		
7	Clamp ring	Copper plating Ni	قور من	A — (131) → B	
8	Resin base	Bakelite	8		•
9	Tube Pin	Copper plating Ni] — " " " " " " " " " " " " " " " " " "		
			20mm -9	'Н	Fig.2
			Fig. 1		

Structure and configuration of MQ-4 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

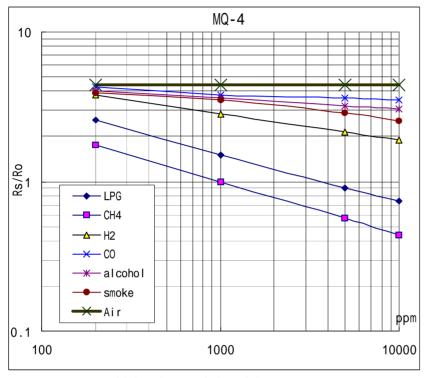


Fig.3 is shows the typical sensitivity characteristics of the MQ-4 for several gases. in their: Temp: 20°C , Humidity: 65%, O_2 concentration 21% RL= $20\text{k}\,\Omega$ Ro: sensor resistance at 1000ppm of CH₄ in the clean air. Rs:sensor resistance at various concentrations of gases.

Fig.2 sensitivity characteristics of the MQ-4

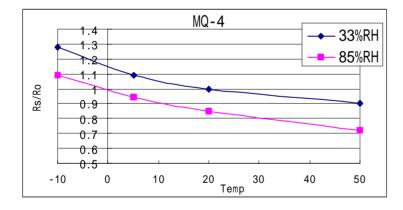


Fig.4 is shows the typical dependence of the MQ-4 on temperature and humidity. Ro: sensor resistance at 1000ppm of CH₄ in air at 33% RH and 20 degree.

Rs: sensor resistance at 1000ppm of CH₄ in air at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-4 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 5000ppm of CH₄ concentration in air and use value of Load resistance (R_L) about 20K Ω (10K Ω $\,$ to 47K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.